Division of Power Series: Recursive and Non-Recursive Formulas

被引:0
作者
Rodriguez-Bermudez, Panters [1 ]
机构
[1] Univ Fed Fluminense, Dept Ciencias Exatas, Ave Trabalhadores 420, BR-27255125 Volta Redonda, RJ, Brazil
来源
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS | 2022年 / 94卷 / 03期
关键词
Division of series; non-recursive formula; power series; recursive formula;
D O I
10.1590/0001-3765202220210897
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we propose a new formula to divide power series. We develop two versions of the formula: a recursive and a non-recursive one, the latter aiming to reduce the computational cost for high-order series truncation. To use the non-recursive formula we define certain fundamental sets of summation indexes. Additional non-trivial information about effects of repetition of the indexes are needed and contabilized within a coefficient.. in the formula, we explain how to calculate the coefficient.. for each summation index by constructing appropriate mappings between the fundamental sets of indexes previous defined.
引用
收藏
页数:11
相关论文
共 16 条
[1]  
ALVAREZ AC., 2001, 4 ITALIAN LATIN AM C, P426
[2]   Hugoniot-Maslov chains of a shock wave in conservation law with polynomial flow [J].
Bermudez, Panters Rodriguez ;
Alonso, Baldomero Valino .
MATHEMATISCHE NACHRICHTEN, 2007, 280 (08) :907-915
[3]  
BERNARD S, 2012, NOVI SAD J MATH, V42, P95
[4]   FAST ALGORITHMS FOR MANIPULATING FORMAL POWER-SERIES [J].
BRENT, RP ;
KUNG, HT .
JOURNAL OF THE ACM, 1978, 25 (04) :581-595
[5]  
Dobrokhotov SY, 1999, RUSS J MATH PHYS, V6, P137
[6]  
DOBROKHOTOV SY, 2004, J MATH SCI-U TOKYO, V124, P5209
[7]   On reciprocal coefficient power series [J].
Kaluza, T .
MATHEMATISCHE ZEITSCHRIFT, 1928, 28 :161-170
[8]   COMPUTING RECIPROCALS OF POWER-SERIES [J].
KUNG, HT .
NUMERISCHE MATHEMATIK, 1974, 22 (05) :341-348
[9]  
LAMPERTI J, 1958, AM MATH MON, V65, P90
[10]  
MASLOV VP, 1977, PROPAGATION SHOCK WA, V8