On-chip development of hydrogel microfibers from round to square/ribbon shape

被引:53
作者
Bai, Zhenhua [1 ]
Reyes, Janet M. Mendoza [2 ]
Montazami, Reza [1 ]
Hashemi, Nastaran [1 ]
机构
[1] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA
[2] Univ Puerto Rico, Dept Comp Engn, San Juan, PR 00681 USA
关键词
GELATIN FIBER MATS; ELECTROSPUN; NANOPARTICLES; FABRICATION; NANOFIBERS; MORPHOLOGY; ALCOHOL);
D O I
10.1039/c3ta14573e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use a microfluidic approach to fabricate gelatin fibers with controlled sizes and cross-sections. Uniform gelatin microfibers with various morphologies and cross-sections (round and square) are fabricated by increasing the gelatin concentration of the core solution from 8% to 12%. Moreover, the increase of gelatin concentration greatly improves the mechanical properties of gelatin fibers; the Young's modulus and tensile stress at break of gelatin (12%) fibers are raised about 2.2 and 1.9 times as those of gelatin (8%) fibers. The COMSOL simulations indicate that the sizes and cross-sections of the gelatin fibers can be tuned by using a microfluidic device with four-chevron grooves. The experimental results demonstrate that the decrease of the sheath-to-core flow-rate ratio from 150 : 1 to 30 : 1 can increase the aspect ratio and size of ribbon-shaped fibers from 35 mu m x 60 mu m to 47 mu m x 282 mu m, which is consistent with the simulation results. The increased size and shape evolution of the cross-section can not only strengthen the Young's modulus and tensile
引用
收藏
页码:4878 / 4884
页数:7
相关论文
共 31 条
[1]   Design and fabrication of uniquely shaped thiol-ene microfibers using a two-stage hydrodynamic focusing design [J].
Boyd, Darryl A. ;
Shields, Adam R. ;
Howell, Peter B., Jr. ;
Ligler, Frances S. .
LAB ON A CHIP, 2013, 13 (15) :3105-3110
[2]   Hydrodynamic Shaping, Polymerization, and Subsequent Modification of Thiol Click Fibers [J].
Boyd, Darryl A. ;
Shields, Adam R. ;
Naciri, Jawad ;
Ligler, Frances S. .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (01) :114-119
[3]   Properties of electrospun pollock gelatin/poly(vinyl alcohol) and pollock gelatin/poly(lactic acid) fibers [J].
Chiou, Bor-Sen ;
Jafri, Haani ;
Avena-Bustillos, Roberto ;
Gregorski, Kay S. ;
Bechtel, Peter J. ;
Imam, Syed H. ;
Glenn, Greg M. ;
Orts, William J. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2013, 55 :214-220
[4]   Electrospun gelatin fibers: Effect of solvent system on morphology and fiber diameters [J].
Choktaweesap, Nuanchan ;
Arayanarakul, Kunawan ;
Aht-Ong, Duangdao ;
Meechaisue, Chidchanok ;
Supaphol, Pitt .
POLYMER JOURNAL, 2007, 39 (06) :622-631
[5]   Rapid and Continuous Hydrodynamically Controlled Fabrication of Biohybrid Microfibers [J].
Daniele, Michael A. ;
North, Stella H. ;
Naciri, Jawad ;
Howell, Peter B. ;
Foulger, Stephen H. ;
Ligler, Frances S. ;
Adams, Andre A. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (06) :698-704
[6]   Cusps, spouts and microfiber synthesis with microfluidics [J].
Duboin, Aurelien ;
Middleton, Roxanne ;
Malloggi, Florent ;
Monti, Fabrice ;
Tabeling, Patrick .
SOFT MATTER, 2013, 9 (11) :3041-3049
[7]   Gel-spinning and drawing of gelatin [J].
Fukae, R ;
Maekawa, A ;
Sangen, S .
POLYMER, 2005, 46 (25) :11193-11194
[8]   Preparation of Gelatin Fiber by Gel Spinning and Its Mechanical Properties [J].
Fukae, Ryohei ;
Midorikawa, Takehiko .
JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 110 (06) :4011-4015
[9]   Microribbon-Like Elastomers for Fabricating Macroporous and Highly Flexible Scaffolds that Support Cell Proliferation in 3D [J].
Han, Li-Hsin ;
Yu, Stephanie ;
Wang, Tianyi ;
Behn, Anthony W. ;
Yang, Fan .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (03) :346-358
[10]   Optofluidic characterization of marine algae using a microflow cytometer [J].
Hashemi, Nastaran ;
Erickson, Jeffrey S. ;
Golden, Joel P. ;
Ligler, Frances S. .
BIOMICROFLUIDICS, 2011, 5 (03)