DIFFUSION MODELS FOR SPIN TRANSPORT DERIVED FROM THE SPINOR BOLTZMANN EQUATION

被引:13
作者
El Hajj, Raymond [1 ,2 ,3 ,4 ]
机构
[1] INSA Rennes, IRMAR, F-35043 Rennes, France
[2] CNRS, UMR 6625, F-35043 Rennes, France
[3] Univ Europeenne Bretagne, F-35043 Rennes, France
[4] Inst Natl Sci Appl Rennes, F-35043 Rennes, France
关键词
Spinor Boltzmann equation; spin-orbit coupling; spin-flip interactions; diffusion limit; decoherence limit; two-component drift-diffusion model; spin-vector drift-diffusion model; MACROSCOPIC MODELS; ENERGY-TRANSPORT; LIMITS; RELAXATION;
D O I
10.4310/CMS.2014.v12.n3.a9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to derive and analyze diffusion models for semiconductor spintronics. We begin by presenting and studying the so called " spinor" Boltzmann equation. Starting then from a rescaled version of linear Boltzmann equation with different spin-flip and non spin-flip collision operators, different continuum (drift-diffusion) models are derived. By comparing the strength of the spin-orbit scattering with the scaled mean free paths, we explain how some models existing in the literature (like the two-component models) can be obtained from the spinor Boltzmann equation. A new spin-vector drift-diffusion model keeping spin relaxation and spin precession effects due to the spin-orbit coupling in semiconductor structures is derived and some of its mathematical properties are checked.
引用
收藏
页码:565 / 592
页数:28
相关论文
共 28 条
[1]  
[Anonymous], 1991, GAS DISCHARGE PHYS
[2]   GIANT MAGNETORESISTANCE OF (001)FE/(001) CR MAGNETIC SUPERLATTICES [J].
BAIBICH, MN ;
BROTO, JM ;
FERT, A ;
VANDAU, FN ;
PETROFF, F ;
EITENNE, P ;
CREUZET, G ;
FRIEDERICH, A ;
CHAZELAS, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (21) :2472-2475
[3]   FLUID DYNAMIC LIMITS OF KINETIC-EQUATIONS .1. FORMAL DERIVATIONS [J].
BARDOS, C ;
GOLSE, F ;
LEVERMORE, D .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (1-2) :323-344
[4]   On a hierarchy of macroscopic models for semiconductors [J].
BenAbdallah, N ;
Degond, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (07) :3306-3333
[5]  
Bittencourt J. A., 1986, Fundamentals of Plasma Physics
[6]   Magnetoelectronics in semiconductor devices [J].
Bournel, A .
ANNALES DE PHYSIQUE, 2000, 25 (01) :1-+
[7]   OSCILLATORY EFFECTS AND THE MAGNETIC-SUSCEPTIBILITY OF CARRIERS IN INVERSION-LAYERS [J].
BYCHKOV, YA ;
RASHBA, EI .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (33) :6039-6045
[8]  
Degond P, 2004, IMA V MATH, V135, P137
[9]   Macroscopic models for semiconductor heterostructures [J].
Degond, P ;
Schmeiser, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (09) :4634-4663
[10]  
Degond P., 2000, AMS/IP Stud. Adv. Math., V266, P77