Data-Driven Spatio-Temporal Modeling Using the Integro-Difference Equation

被引:25
作者
Dewar, Michael [1 ]
Scerri, Kenneth [2 ]
Kadirkamanathan, Visakan [2 ]
机构
[1] Univ Edinburgh, Sch Informat, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
关键词
Dynamic spatio-temporal modeling; expectation-maximization (EM) algorithm; Integro-Difference Equation (IDE); maximum-likelihood parameter estimation; state-space; MAXIMUM-LIKELIHOOD; IDENTIFICATION; DISPERSAL;
D O I
10.1109/TSP.2008.2005091
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A continuous-in-space, discrete-in-time dynamic spatio-temporal model known as the Integro-Difference Equation (IDE) model is presented in the context of data-driven modeling. A novel decomposition of the IDE is derived, leading to state-space representation that does not couple the number of states with the number of observation locations or the number of parameters. Based on this state-space model, an expectation-maximization (EM) algorithm is developed in order to jointly estimate the IDE model's spatial field and spatial mixing kernel. The resulting modeling framework is demonstrated on a set of examples.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 26 条
[1]  
[Anonymous], COMPLEX SYSTEMS CHAO
[2]   Bayesian inference for linear dynamic models with Dirichlet process mixtures [J].
Caron, Francois ;
Davy, Manuel ;
Doucet, Arnaud ;
Duflos, Emmanuel ;
Vanheeghe, Philippe .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (01) :71-84
[3]   Analysis and reconstruction of stochastic coupled map lattice models [J].
Coca, D ;
Billings, SA .
PHYSICS LETTERS A, 2003, 315 (1-2) :61-75
[4]   Identification of coupled map lattice models of complex spatio-temporal patterns [J].
Coca, D ;
Billings, SA .
PHYSICS LETTERS A, 2001, 287 (1-2) :65-73
[5]  
Cressie N., 2002, ENCY ENV, V4, P2045
[6]  
Cressie N., 1993, Statistics for spatial data
[7]  
de Luna X, 2005, STAT SINICA, V15, P547
[8]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[9]   A canonical space-time state space model: State and parameter estimation [J].
Dewar, Michael ;
Kadirkarnanathan, Visakan .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (10) :4862-4870
[10]   A formal test for nonstationarity of spatial stochastic processes [J].
Fuentes, M .
JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 96 (01) :30-54