Rational Design of a DNA-Scaffolded High-Affinity Binder for Langerin

被引:19
作者
Bachem, Gunnar [1 ]
Wamhoff, Eike-Christian [2 ]
Silberreis, Kim [3 ,4 ,5 ,6 ]
Kim, Dongyoon [2 ]
Baukmann, Hannes [2 ]
Fuchsberger, Felix [2 ]
Dernedde, Jens [3 ,4 ,5 ,6 ]
Rademacher, Christoph [2 ]
Seitz, Oliver [1 ]
机构
[1] Humboldt Univ, Dept Chem, D-12489 Berlin, Germany
[2] Max Planck Inst Colloids & Interfaces, Dept Biomol Syst, D-14424 Potsdam, Germany
[3] Charite Univ Med Berlin, Inst Lab Med Clin Chem & Pathobiochem, D-13353 Berlin, Germany
[4] Free Univ Berlin, D-13353 Berlin, Germany
[5] Humboldt Univ, D-13353 Berlin, Germany
[6] Berlin Inst Hlth, D-13353 Berlin, Germany
关键词
carbohydrate recognition; DNA nanotechnology; lectins; multivalent interactions; peptide nucleic acids; INFLUENZA-A VIRUS; SOLID-PHASE SYNTHESIS; DC-SIGN; SELECTIVE RECOGNITION; CARBON NANOTUBES; BINDING-SITES; LIGANDS; LECTIN; MULTIVALENCY; INHIBITORS;
D O I
10.1002/anie.202006880
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Binders of langerin could target vaccines to Langerhans cells for improved therapeutic effect. Since langerin has low affinity for monovalent glycan ligands, highly multivalent presentation has previously been key for targeting. Aiming to reduce the amount of ligand required, we rationally designed molecularly defined high-affinity binders based on the precise display of glycomimetic ligands (Glc2NTs) on DNA-PNA scaffolds. Rather than mimicking langerin's homotrimeric structure with a C3-symmetric scaffold, we developed readily accessible, easy-to-design bivalent binders. The method considers the requirements for bridging sugar binding sites and statistical rebinding as a means to both strengthen the interactions at single binding sites and amplify the avidity enhancement provided by chelation. This gave a 1150-fold net improvement over the affinity of the free ligand and provided a nanomolar binder (IC50=300 nM) for specific internalization by langerin-expressing cells.
引用
收藏
页码:21016 / 21022
页数:7
相关论文
共 71 条
  • [1] DNA-Controlled Bivalent Presentation of Ligands for the Estrogen Receptor
    Abendroth, Frank
    Bujotzek, Alexander
    Shan, Min
    Haag, Rainer
    Weber, Marcus
    Seitz, Oliver
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (37) : 8592 - 8596
  • [2] [Anonymous], 1995, ANGEW CHEM
  • [3] [Anonymous], 2011, ANGEW CHEM
  • [4] [Anonymous], 2012, ANGEW CHEM, DOI DOI 10.1002/ANGE.201201114
  • [5] DNA Concatamers by Rolling-Circle Amplification as Multivalent Inhibitors of Influenza A Virus Particles
    Bandlow, Victor
    Lauster, Daniel
    Ludwig, Kai
    Hilsch, Malte
    Reiter-Scherer, Valentin
    Rabe, Juergen P.
    Boettcher, Christoph
    Herrmann, Andreas
    Seitz, Oliver
    [J]. CHEMBIOCHEM, 2019, 20 (02) : 159 - 165
  • [6] Spatial Screening of Hemagglutinin on Influenza A Virus Particles: Sialyl-LacNAc Displays on DNA and PEG Scaffolds Reveal the Requirements for Bivalency Enhanced Interactions with Weak Monovalent Binders
    Bandlow, Victor
    Liese, Susanne
    Lauster, Daniel
    Ludwig, Kai
    Netz, Roland R.
    Herrmann, Andreas
    Seitz, Oliver
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (45) : 16389 - 16397
  • [7] Pathogen Inhibition by Multivalent Ligand Architectures
    Bhatia, Sumati
    Camacho, Luis Cuellar
    Haag, Rainer
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (28) : 8654 - 8666
  • [8] Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands
    Cecioni, Samy
    Imberty, Anne
    Vidal, Sebastien
    [J]. CHEMICAL REVIEWS, 2015, 115 (01) : 525 - 561
  • [9] Sweet carbon nanostructures: carbohydrate conjugates with carbon nanotubes and graphene and their applications
    Chen, Yanan
    Star, Alexander
    Vidal, Sebastien
    [J]. CHEMICAL SOCIETY REVIEWS, 2013, 42 (11) : 4532 - 4542
  • [10] Probing heterobivalent binding to the endocytic AP-2 adaptor complex by DNA-based spatial screening
    Diezmann, F.
    von Kleist, L.
    Hauckeb, V.
    Seitz, O.
    [J]. ORGANIC & BIOMOLECULAR CHEMISTRY, 2015, 13 (29) : 8008 - 8015