Distinguishing simple algebras by means of polynomial identities

被引:9
作者
Bahturin, Yuri [1 ]
Yasumura, Felipe [2 ]
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[2] Univ Estadual Maringa, Dept Math, Maringa, PR, Brazil
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2019年 / 13卷 / 01期
基金
加拿大自然科学与工程研究理事会; 巴西圣保罗研究基金会;
关键词
Graded algebra; Polynomial identity; Universal algebra;
D O I
10.1007/s40863-019-00126-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main goal is to extend one of classical Razmyslov's Theorem saying that any two simple finite-dimensional Omega-algebras over an algebraically closed field, satisfying the same polynomial identities, are isomorphic. We suggest a method that allows one to reduce problems about identities of algebras with additional structure to the identities of Omega-algebras. For the convenience of the reader, we start with a full detailed proof of Razmyslov's Theorem. Then we describe our method and its consequences for the identities of graded algebras, algebras with involution, and several others.
引用
收藏
页码:39 / 72
页数:34
相关论文
共 33 条
[1]  
Bahturin Y. A., 1987, IDENTICAL RELATIONS
[2]   Graded polynomial identities as identities of universal algebras [J].
Bahturin, Yuri ;
Yasumura, Felipe .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 562 :1-14
[3]  
Bahturin YuriA., 1992, INFINITE DIMENSIONAL, V7
[4]   Identities and isomorphisms of finite-dimensional graded simple algebras [J].
Bianchi, Angelo ;
Diniz, Diogo .
JOURNAL OF ALGEBRA, 2019, 526 :333-344
[5]  
Elduque A., 2013, MATH SURVEYS MONOGRA, V189
[6]  
Giambruno A, 2005, POLYNOMIAL IDENTITIE
[7]  
Jacobson N., 1989, BASIC ALGEBRA, VII
[8]  
KUSHKULEI AK, 1983, VESTN MOSK U MAT M+, P4
[9]  
Lang S., 1965, ALGEBRA
[10]  
Razmyslov IP, 1994, IDENTITIES ALGEBRAS