On the Fermi-Walker Derivative for Inextensible Flows

被引:49
|
作者
Korpinar, Talat [1 ]
机构
[1] Mus Alparslan Univ, Dept Math, TR-49250 Mus, Turkey
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2015年 / 70卷 / 07期
关键词
Charged Particle; Fermi-Walker Derivative; Fluid Flow; Nonrotating Frame; Partial Differential Equation; BIHARMONIC PARTICLES; LORENTZ TRANSFORMATIONS; CURVES; SURFACES;
D O I
10.1515/zna-2015-0044
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we explicitly determine some curves corresponding to the their flows on the three-dimensional space. We construct a new characterisation for inextensible flows of curves by using the Fermi-Walker derivative and the Fermi-Walker parallelism in space. Using the Frenet frame of the given curve, we present partial differential equations. Finally, we construct the Fermi-Walker derivative in the motion of a charged particle under the action of electric and magnetic fields.
引用
收藏
页码:477 / 482
页数:6
相关论文
共 48 条