Model-based optimization of antibody galactosylation in CHO cell culture

被引:63
作者
Kotidis, Pavlos [1 ]
Jedrzejewski, Philip [1 ,2 ,3 ]
Sou, Si Nga [1 ,2 ,3 ,6 ]
Sellick, Christopher [4 ,7 ]
Polizzi, Karen [2 ,3 ]
del Val, Ioscani Jimenez [5 ]
Kontoravdi, Cleo [1 ]
机构
[1] Imperial Coll London, Dept Chem Engn, London SW7 2AZ, England
[2] Imperial Coll London, Dept Life Sci, London, England
[3] Imperial Coll London, Ctr Synthet Biol & Innovat, London, England
[4] MedImmune, Cell Culture & Fermentat Sci BioPharmaceut Dev, Granta Pk, Cambridge, England
[5] Univ Coll Dublin, Sch Chem & Bioproc Engn, Dublin, Ireland
[6] MedImmune, Granta Pk, Cambridge, England
[7] Kymab Ltd, Babraham Res Campus, Cambridge, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
antibody glycosylation; Chinese hamster ovary (CHO) cells; galactosylation; mathematical modeling; nucleotide sugars; process optimization; MATHEMATICAL-MODEL; DYNAMIC-MODEL; GLYCOSYLATION; GLUCOSE; TRANSPORT; GLYCOFORM; GENES;
D O I
10.1002/bit.26960
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Exerting control over the glycan moieties of antibody therapeutics is highly desirable from a product safety and batch-to-batch consistency perspective. Strategies to improve antibody productivity may compromise quality, while interventions for improving glycoform distribution can adversely affect cell growth and productivity. Process design therefore needs to consider the trade-off between preserving cellular health and productivity while enhancing antibody quality. In this work, we present a modeling platform that quantifies the impact of glycosylation precursor feeding - specifically that of galactose and uridine - on cellular growth, metabolism as well as antibody productivity and glycoform distribution. The platform has been parameterized using an initial training data set yielding an accuracy of +/- 5% with respect to glycoform distribution. It was then used to design an optimized feeding strategy that enhances the final concentration of galactosylated antibody in the supernatant by over 90% compared with the control without compromising the integral of viable cell density or final antibody titer. This work supports the implementation of Quality by Design towards higher-performing bioprocesses.
引用
收藏
页码:1612 / 1626
页数:15
相关论文
共 39 条
[1]   Gene-expression profiles for five key glycosylation genes for galactose-fed CHO cells expressing recombinant IL-4/13 cytokine trap [J].
Clark, KJR ;
Griffiths, J ;
Bailey, KM ;
Harcum, SW .
BIOTECHNOLOGY AND BIOENGINEERING, 2005, 90 (05) :568-577
[2]   A theoretical estimate for nucleotide sugar demand towards Chinese Hamster Ovary cellular glycosylation [J].
del Val, Ioscani Jimenez ;
Polizzi, Karen M. ;
Kontoravdi, Cleo .
SCIENTIFIC REPORTS, 2016, 6
[3]   Dynamics of immature mAb glycoform secretion during CHO cell culture: An integrated modelling framework [J].
del Val, Ioscani Jimenez ;
Fan, Yuzhou ;
Weilguny, Dietmar .
BIOTECHNOLOGY JOURNAL, 2016, 11 (05) :610-623
[4]   An optimized method for extraction and quantification of nucleotides and nucleotide sugars from mammalian cells [J].
del Val, Ioscani Jimenez ;
Kyriakopoulos, Sarantos ;
Polizzi, Karen M. ;
Kontoravdi, Cleo .
ANALYTICAL BIOCHEMISTRY, 2013, 443 (02) :172-180
[5]   A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus [J].
del Val, Ioscani Jimenez ;
Nagy, Judit M. ;
Kontoravdi, Cleo .
BIOTECHNOLOGY PROGRESS, 2011, 27 (06) :1730-1743
[6]   A multi-pronged investigation into the effect of glucose starvation and culture duration on fed-batch CHO cell culture [J].
Fan, Yuzhou ;
Del Val, Ioscani Jimenez ;
Muller, Christian ;
Lund, Anne Mathilde ;
Sen, Jette Wagtberg ;
Rasmussen, Soren Kofoed ;
Kontoravdi, Cleo ;
Baycin-Hizal, Deniz ;
Betenbaugh, Michael J. ;
Weilguny, Dietmar ;
Andersen, Mikael Rordam .
BIOTECHNOLOGY AND BIOENGINEERING, 2015, 112 (10) :2172-2184
[7]   High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans [J].
Goetze, Andrew M. ;
Liu, Y. Diana ;
Zhang, Zhongqi ;
Shah, Bhavana ;
Lee, Edward ;
Bondarenko, Pavel V. ;
Flynn, Gregory C. .
GLYCOBIOLOGY, 2011, 21 (07) :949-959
[8]   CHO Cell Line Specific Prediction and Control of Recombinant Monoclonal Antibody N-Glycosylation [J].
Grainger, Rhian K. ;
James, David C. .
BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (11) :2970-2983
[9]   Modulation of Antibody Galactosylation Through Feeding of Uridine, Manganese Chloride, and Galactose [J].
Gramer, Michael J. ;
Eckblad, Jackie J. ;
Donahue, Ruth ;
Brown, Joseph ;
Shultz, Carrie ;
Vickerman, Kent ;
Priem, Patrick ;
van den Bremer, Ewald T. J. ;
Gerritsen, Jolanda ;
van Berkel, Patrick H. C. .
BIOTECHNOLOGY AND BIOENGINEERING, 2011, 108 (07) :1591-1602
[10]   Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro [J].
Hodoniczky, J ;
Zheng, YZ ;
James, DC .
BIOTECHNOLOGY PROGRESS, 2005, 21 (06) :1644-1652