Explicit Wave Solutions and Qualitative Analysis of the (1+2)-Dimensional Nonlinear Schrodinger Equation with Dual-Power Law Nonlinearity

被引:0
作者
Meng, Qing [1 ]
He, Bin [2 ]
Li, Zhenyang [2 ]
机构
[1] Honghe Univ, Dept Phys, Mengzi 661100, Yunnan, Peoples R China
[2] Honghe Univ, Coll Math, Mengzi 661100, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
SOLITONS;
D O I
10.1155/2015/408630
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The (1 + 2)-dimensional nonlinear Schrodinger equation with dual-power law nonlinearity is studied using the factorization technique, bifurcation theory of dynamical system, and phase portraits analysis. From a dynamic point of view, the existence of smooth solitary wave, and kink and antikink waves is proved and all possible explicit parametric representations of these waves are presented.
引用
收藏
页数:16
相关论文
共 17 条
[1]   1-soliton solution of (1+2)-dimensional nonlinear Schrodinger's equation in dual-power law media [J].
Biswas, Anjan .
PHYSICS LETTERS A, 2008, 372 (38) :5941-5943
[2]   Bright and dark solitons of the generalized nonlinear Schrodinger's equation [J].
Biswas, Anjan ;
Milovic, Daniela .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) :1473-1484
[3]  
Bulut H., EXACT SOLUTIONS NONL
[4]  
Hasegawa A., 1995, Solitons in Optical Communications
[5]   Bifurcations and exact bounded travelling wave solutions for a partial differential equation [J].
He, Bin .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) :364-371
[6]   Optical solitary wave solutions for the higher order nonlinear Schrodinger equation with cubic-quintic non-Kerr terms [J].
Hong, WP .
OPTICS COMMUNICATIONS, 2001, 194 (1-3) :217-223
[7]  
Latif M. S. Abdel, 2014, APPL MATH COMPUT, V247, P501
[8]  
Li J., 2007, STUDY SINGULAR NONLI
[9]   New types of solitary wave solutions for the higher order nonlinear Schrodinger equation [J].
Li, ZH ;
Li, L ;
Tian, HP ;
Zhou, GS .
PHYSICAL REVIEW LETTERS, 2000, 84 (18) :4096-4099
[10]   The bifurcation and exact travelling wave solutions of (1+2)-dimensional nonlinear Schrodinger equation with dual-power law nonlinearity [J].
Liu, Haihong ;
Yan, Fang ;
Xu, Chenglin .
NONLINEAR DYNAMICS, 2012, 67 (01) :465-473