Complexity Lower Bounds for Nonconvex-Strongly-Concave Min-Max Optimization

被引:0
|
作者
Li, Haochuan [1 ]
Tian, Yi [1 ]
Zhang, Jingzhao [1 ]
Jadbabaie, Ali [2 ]
机构
[1] MIT, Dept EECS, Cambridge, MA 02139 USA
[2] MIT, Dept CEE, Cambridge, MA 02139 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021) | 2021年 / 34卷
关键词
CONVERGENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We provide a first-order oracle complexity lower bound for finding stationary points of min-max optimization problems where the objective function is smooth, nonconvex in the minimization variable, and strongly concave in the maximization variable. We establish a lower bound of Omega (root kappa epsilon(-2) for deterministic oracles, where epsilon defines the level of approximate stationarity and kappa is the condition number. Our lower bound matches the best existing upper bound in the epsilon and kappa dependence up to logarithmic factors. For stochastic oracles, we provide a lower bound of Omega (root kappa c(-2) vertical bar kappa 1/3c(-4). It suggests that there is a gap between the best existing upper bound O(kappa(3)epsilon(-4)) and our lower bound in the condition number dependence.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] An Efficient Stochastic Algorithm for Decentralized Nonconvex-Strongly-Concave Minimax Optimization
    Chen, Lesi
    Ye, Haishan
    Luo, Luo
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [2] The Complexity of Constrained Min-Max Optimization
    Daskalakis, Constantinos
    Skoulakis, Stratis
    Zampetakis, Manolis
    STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2021, : 1466 - 1478
  • [3] Min-Max Spaces and Complexity Reduction in Min-Max Expansions
    Gaubert, Stephane
    McEneaney, William M.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (03): : 315 - 348
  • [4] Complexity of the min-max and min-max regret assignment problems
    Aissi, H
    Bazgan, C
    Vanderpooten, D
    OPERATIONS RESEARCH LETTERS, 2005, 33 (06) : 634 - 640
  • [5] Min-Max Spaces and Complexity Reduction in Min-Max Expansions
    Stephane Gaubert
    William M. McEneaney
    Applied Mathematics & Optimization, 2012, 65 : 315 - 348
  • [6] BOUNDS FOR MIN-MAX HEAPS
    HASHAM, A
    SACK, JR
    BIT, 1987, 27 (03): : 315 - 323
  • [7] Finding Second-Order Stationary Points in Nonconvex-Strongly-Concave Minimax Optimization
    Luo, Luo
    Li, Yujun
    Chen, Cheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [8] Efficient Methods for Structured Nonconvex-Nonconcave Min-Max Optimization
    Diakonikolas, Jelena
    Daskalakis, Constantinos
    Jordan, Michael, I
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [9] Nonconvex Min-Max Optimization Applications, challenges, and recent theoretical advances
    Razaviyayn, Meisam
    Huang, Tianjian
    Lu, Songtao
    Nouiehed, Maher
    Sanjabi, Maziar
    Hong, Mingyi
    IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (05) : 55 - 66
  • [10] AN ACCELERATED INEXACT PROXIMAL POINT METHOD FOR SOLVING NONCONVEX-CONCAVE MIN-MAX PROBLEMS
    Kong, Weiwei
    Monteiro, Renato D. C.
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (04) : 2558 - 2585