Conservation Laws, Hierarchy of Dynamics and Explicit Integration of Nonholonomic Systems

被引:85
作者
Borisov, A. V. [1 ]
Mamaev, I. S. [1 ]
机构
[1] Udmurt State Univ, Inst Comp Sci, Izhevsk 426034, Russia
基金
俄罗斯基础研究基金会;
关键词
nonholonomic systems; implementation of constraints; conservation laws; hierarchy of dynamics; explicit integration;
D O I
10.1134/S1560354708050079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper can be regarded as a continuation of our previous work [1, 2] on the hierarchy of the dynamical behavior of nonholonomic systems. We consider different mechanical systems with nonholonomic constraints; in particular, we examine the existence of tensor invariants (laws of conservation) and their connection with the behavior of a system. Considerable attention is given to the possibility of conformally Hamiltonian representation of the equations of motion, which is mainly used for the integration of the considered systems.
引用
收藏
页码:443 / 490
页数:48
相关论文
共 119 条
[41]  
Ehlers K, 2005, PROG MATH, V232, P75
[42]  
EHLERS K, P IUTAM S 2006 HAM D, P469
[43]   Separable systems of Stackel [J].
Eisenhart, LP .
ANNALS OF MATHEMATICS, 1934, 35 :284-305
[44]   Frictional coupling between sliding and spinning motion [J].
Farkas, Z ;
Bartels, G ;
Unger, T ;
Wolf, DE .
PHYSICAL REVIEW LETTERS, 2003, 90 (24) :4
[45]   Periodic flows, rank-two Poisson structures, and nonholonomic mechanics [J].
Fassò, F ;
Giacobbe, A ;
Sansonetto, N .
REGULAR & CHAOTIC DYNAMICS, 2005, 10 (03) :267-284
[46]  
Fedorov Y.N., 1995, AM MATH SOC TRANSL 2, V168, P141
[47]  
FEDOROV YN, 1988, VESTN MOSK U MAT M+, P91
[48]  
FEDOROV YN, 1989, VESTN MOSK U MAT M+, P38
[49]   Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces [J].
Fedorov, YN ;
Jovanovic, B .
JOURNAL OF NONLINEAR SCIENCE, 2004, 14 (04) :341-381
[50]  
FEDOROV YN, 1996, REGUL CHAOTIC DYN, V1, P38