mTOR kinase structure, mechanism and regulation

被引:862
作者
Yang, Haijuan [1 ]
Rudge, Derek G. [1 ]
Koos, Joseph D. [1 ]
Vaidialingam, Bhamini [1 ]
Yang, Hyo J. [1 ]
Pavletich, Nikola P. [1 ,2 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Struct Biol Program, New York, NY 10065 USA
[2] Mem Sloan Kettering Canc Ctr, Howard Hughes Med Inst, New York, NY 10065 USA
关键词
P70; S6; KINASE; MAMMALIAN TARGET; CELL-GROWTH; BINDING PARTNER; RAG GTPASES; RAPAMYCIN; RAPTOR; TOR; RHEB; PATHWAY;
D O I
10.1038/nature12122
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mammalian target of rapamycin (mTOR), a phosphoinositide 3-kinase-related protein kinase, controls cell growth in response to nutrients and growth factors and is frequently deregulated in cancer. Here we report co-crystal structures of a complex of truncated mTOR and mammalian lethal with SEC13 protein 8 (mLST8) with an ATP transition state mimic and with ATP-site inhibitors. The structures reveal an intrinsically active kinase conformation, with catalytic residues and a catalytic mechanism remarkably similar to canonical protein kinases. The active site is highly recessed owing to the FKBP12-rapamycin-binding (FRB) domain and an inhibitory helix protruding from the catalytic cleft. mTOR-activating mutations map to the structural framework that holds these elements in place, indicating that the kinase is controlled by restricted access. In vitro biochemistry shows that the FRB domain acts as a gatekeeper, with its rapamycin-binding site interacting with substrates to grant them access to the restricted active site. Rapamycin-FKBP12 inhibits the kinase by directly blocking substrate recruitment and by further restricting active-site access. The structures also reveal active-site residues and conformational changes that underlie inhibitor potency and specificity.
引用
收藏
页码:217 / +
页数:8
相关论文
共 53 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases [J].
Apsel, Beth ;
Blair, Jimmy A. ;
Gonzalez, Beatriz ;
Nazif, Tamim M. ;
Feldman, Morri E. ;
Aizenstein, Brian ;
Hoffman, Randy ;
Williams, Roger L. ;
Shokat, Kevan M. ;
Knight, Zachary A. .
NATURE CHEMICAL BIOLOGY, 2008, 4 (11) :691-699
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   Briefly Bound to Activate: Transient Binding of a Second Catalytic Magnesium Activates the Structure and Dynamics of CDK2 Kinase for Catalysis [J].
Bao, Zhao Qin ;
Jacobsen, Douglas M. ;
Young, Matthew A. .
STRUCTURE, 2011, 19 (05) :675-690
[5]   FAT: a novel domain in PIK-related kinases [J].
Bosotti, R ;
Isacchi, A ;
Sonnhammer, ELL .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (05) :225-227
[6]   Generation, representation and flow of phase information in structure determination:: recent developments in and around SHARP 2.0 [J].
Bricogne, G ;
Vonrhein, C ;
Flensburg, C ;
Schiltz, M ;
Paciorek, W .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2003, 59 :2023-2030
[7]   CONTROL OF P70 S6 KINASE BY KINASE-ACTIVITY OF FRAP IN-VIVO [J].
BROWN, EJ ;
BEAL, PA ;
KEITH, CT ;
CHEN, J ;
SHIN, TB ;
SCHREIBER, SL .
NATURE, 1995, 377 (6548) :441-446
[8]   LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway [J].
Chen, EJ ;
Kaiser, CA .
JOURNAL OF CELL BIOLOGY, 2003, 161 (02) :333-347
[9]   Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP [J].
Choi, JW ;
Chen, J ;
Schreiber, SL ;
Clardy, J .
SCIENCE, 1996, 273 (5272) :239-242
[10]   Not all substrates are treated equally Implications for mTOR, rapamycin-resistance and cancer therapy [J].
Choo, Andrew Y. ;
Blenis, John .
CELL CYCLE, 2009, 8 (04) :567-572