Fixed point theorems on quasi-partial metric spaces

被引:68
作者
Karapinar, Erdal [1 ]
Erhan, I. M. [1 ]
Ozturk, Ali [2 ]
机构
[1] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
[2] Abant Izzet Baysal Univ, Dept Math, Bolu, Turkey
关键词
Partial metric space; Quasi-partial metric space; Fixed point theorem;
D O I
10.1016/j.mcm.2012.06.036
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, the concept of a quasi-partial metric space is introduced, and some general fixed point theorems in quasi-partial metric spaces are proved. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2442 / 2448
页数:7
相关论文
共 11 条
[1]   Fixed Point Theorems for Monotone Mappings on Partial Metric Spaces [J].
Altun, Ishak ;
Erduran, Ali .
FIXED POINT THEORY AND APPLICATIONS, 2011,
[2]   Generalized contractions on partial metric spaces [J].
Altun, Ishak ;
Sola, Ferhan ;
Simsek, Hakan .
TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (18) :2778-2785
[3]   FIXED-POINT THEOREMS FOR MAPPINGS SATISFYING INWARDNESS CONDITIONS [J].
CARISTI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 215 (JAN) :241-251
[4]  
Hicks T., 1988, Math. Japonica, V33, P231
[5]  
Karapinar E, 2012, J COMPUT ANAL APPL, V14, P206
[6]   Fixed point theory for cyclic (I•-ψ)-contractions [J].
Karapinar, Erdal ;
Sadarangani, Kishin .
FIXED POINT THEORY AND APPLICATIONS, 2011, :1-8
[7]   Partial quasi-metrics [J].
Kuenzi, H. -P. A. ;
Pajoohesh, H. ;
Schellekens, M. P. .
THEORETICAL COMPUTER SCIENCE, 2006, 365 (03) :237-246
[8]  
Matthews S. G., 1992, ANN NY ACAD SCI, V728, P183
[9]   The canonical partial metric and the uniform convexity on normed spaces [J].
Oltra, S. ;
Romaguera, S. ;
Sanchez-Perez, E. A. .
APPLIED GENERAL TOPOLOGY, 2005, 6 (02) :185-194
[10]  
Oltra S., 2004, REND I MAT U TRIESTE, V36, P17