MARGINALIZATION OF UNINTERESTING DISTRIBUTED PARAMETERS IN INVERSE PROBLEMS-APPLICATION TO DIFFUSE OPTICAL TOMOGRAPHY

被引:56
作者
Kolehmainen, Ville [1 ]
Tarvainen, Tanja [1 ]
Arridge, Simon R. [2 ]
Kaipio, Jari P. [1 ,3 ]
机构
[1] Univ Eastern Finland, Dept Math & Phys, Kuopio 70211, Finland
[2] UCL, Dept Comp Sci, London WC1E 6BT, England
[3] Univ Auckland, Dept Math, Auckland 1142, New Zealand
基金
芬兰科学院; 英国工程与自然科学研究理事会;
关键词
inverse problems; Bayesian inference; parameter estimation; spatial uncertainty; diffuse optical tomography;
D O I
10.1615/Int.J.UncertaintyQuantification.v1.i1.10
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With inverse problems there are often several unknown distributed parameters of which only one may be of interest. Since assigning incorrect fixed values to the uninteresting parameters usually leads to a severely erroneous model, one is forced to estimate all distributed parameters simultaneously. This may increase the computational complexity of the problem significantly. In the Bayesian framework, all unknowns are generally treated as random variables and estimated simultaneously and all uncertainties can be modeled systematically. Recently, the approximation error approach has been proposed for handling uncertainty and model-reduction-related errors in the models. In this approach approximate marginalization of these errors is carried out before the estimation of the interesting variables. In this paper we discuss the adaptation of the approximation error approach to the marginalization of uninteresting distributed parameters. As an example, we consider the marginalization of scattering coefficient in diffuse optical tomography.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 36 条
[1]  
[Anonymous], 2007, BAYESIAN CHOICE, DOI DOI 10.1007/0-387-71599-1
[2]   Optical tomography: forward and inverse problems [J].
Arridge, Simon R. ;
Schotland, John C. .
INVERSE PROBLEMS, 2009, 25 (12)
[3]   Approximation errors and model reduction with an application in optical diffusion tomography [J].
Arridge, SR ;
Kaipio, JP ;
Kolehmainen, V ;
Schweiger, M ;
Somersalo, E ;
Tarvainen, T ;
Vauhkonen, M .
INVERSE PROBLEMS, 2006, 22 (01) :175-195
[4]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[5]  
Berger J.O., 2006, STAT DECISION THEORY, Vsecond
[6]  
Calvetti D., 2007, Introduction to Bayesian Scientific Computing
[7]  
Caveltti D., 2006, Int. J. Math. Comput. Sci., V1, P63
[8]  
Chen M.-H., 2000, Monte Carlo Methods in Bayesian Computation
[9]   ELECTRICAL-RESISTIVITY TOMOGRAPHY OF VADOSE WATER-MOVEMENT [J].
DAILY, W ;
RAMIREZ, A ;
LABRECQUE, D ;
NITAO, J .
WATER RESOURCES RESEARCH, 1992, 28 (05) :1429-1442
[10]  
Daily W., 2004, The Leading Edge, V23, P438, DOI [10.2172/15010154, DOI 10.2172/15010154, 10.1190/1.1729225, DOI 10.1190/1.1729225]