Modulus of continuity with respect to semigroups of analytic functions and applications

被引:4
作者
Blasco, O. [1 ]
机构
[1] Univ Valencia, Dept Anal Matemat, E-46100 Burjassot, Spain
关键词
Semigroups of analytic functions; Lipschitz spaces; Hardy spaces; Bergman spaces; SPACES;
D O I
10.1016/j.jmaa.2015.10.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a complex Banach space E, a semigroup of analytic functions (phi(t)) and an analytic function F : D -> E we introduce the modulus w(phi) (F,t) = sup (vertical bar z vertical bar 1<1) parallel to F(phi(t) (z)) - F(z)parallel to. We show that if 0 < alpha <= 1 and F belongs to the vector-valued disc algebra A(D, E), the Lipschitz condition M-infinity(F', r) = as r -> 1 is equivalent to w(phi) (F,t) = O(t(alpha)) as t -> 0 for any semigroup of analytic functions (phi(t)), with (phi(t) (0) = 0 and infinitesimal generator g, satisfying that c4 and G belong to H-infinity(D) with sup(0 <= t <=) parallel to phi'parallel to(infinity) <infinity, and in particular is equivalent to the condition parallel to F' -Fr parallel to(A(D,E)) = O ((1 - r)(alpha)) as r -> 1. We apply this result to particular semigroups (phi(t)) and particular spaces of analytic functions E, such as Hardy or Bergman spaces, to recover several known results about Lipschitz type functions. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:616 / 626
页数:11
相关论文
共 16 条
[1]  
BERKSON E, 1978, MICH MATH J, V25, P101
[2]   SEMIGROUPS OF COMPOSITION OPERATORS AND INTEGRAL OPERATORS IN SPACES OF ANALYTIC FUNCTIONS [J].
Blasco, Oscar ;
Contreras, Manuel D. ;
Diaz-Madrigal, Santiago ;
Martinez, Josep ;
Papadimitrakis, Michael ;
Siskakis, Aristomenis G. .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (01) :67-89
[3]  
Blasco O, 2011, REV MAT IBEROAM, V27, P415
[4]  
Butzer L., 1967, SEMIGROUPS OF OPERAT
[5]  
Contreras MD, 2005, REV MAT IBEROAM, V21, P911
[6]  
Duren P., 1970, THEORY SPACES
[7]  
Duren PL, 1983, Univalent Functions
[8]  
Galanopoulos P., 2015, J MATH ANAL IN PRESS
[9]  
GARNETT J. B., 1981, PURE APPL MATH, V96
[10]   FRACTIONAL POWERS OF OPERATORS [J].
KOMATSU, H .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 19 (02) :285-&