Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA

被引:37
作者
Froula, D. H. [1 ]
Kessler, T. J. [1 ]
Igumenshchev, I. V. [1 ]
Betti, R. [1 ,2 ,3 ]
Goncharov, V. N. [1 ]
Huang, H. [1 ]
Hu, S. X. [1 ]
Hill, E. [1 ]
Kelly, J. H. [1 ]
Meyerhofer, D. D. [1 ]
Shvydky, A. [1 ]
Zuegel, J. D. [1 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[2] Univ Rochester, Dept Phys, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
关键词
DIRECT-DRIVE; INERTIAL FUSION; PERFORMANCE; IMPLOSIONS; TARGETS; LASERS;
D O I
10.1063/1.4818427
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Cross-beam energy transfer (CBET) during OMEGA low-adiabat cryogenic experiments reduces the hydrodynamic efficiency by similar to 35%, which lowers the calculated one-dimensional (1-D) yield by a factor of 7. CBET can be mitigated by reducing the diameter of the laser beams relative to the target diameter. Reducing the diameter of the laser beams by 30%, after a sufficient conduction zone has been generated (two-state zooming), is predicted to maintain low-mode uniformity while recovering 90% of the kinetic energy lost to CBET. A radially varying phase plate is proposed to implement two-state zooming on OMEGA. A beam propagating through the central half-diameter of the phase plate will produce a large spot, while a beam propagating through the outer annular region of the phase plate will produce a narrower spot. To generate the required two-state near-field laser-beam profile, a picket driver with smoothing by spectral dispersion (SSD) would pass through an apodizer, forming a beam of half the standard diameter. A second main-pulse driver would co-propagate without SSD through its own apodizer, forming a full-diameter annular beam. Hydrodynamic simulations, using the designed laser spots produced by the proposed zooming scheme on OMEGA, show that implementing zooming will increase the implosion velocity by 25% resulting in a 4.5x increase in the 1-D neutron yield. Demonstrating zooming on OMEGA would validate a viable direct-drive CBET mitigation scheme and help establish a pathway to hydrodynamically equivalent direct-drive-ignition implosions by increasing the ablation pressure (1.6x), which will allow for more stable implosions at ignition-relevant velocities. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 37 条
[1]  
Betti R., 2012, 24 IAEA FUS EN C SAN
[2]   Initial performance results of the OMEGA laser system [J].
Boehly, TR ;
Brown, DL ;
Craxton, RS ;
Keck, RL ;
Knauer, JP ;
Kelly, JH ;
Kessler, TJ ;
Kumpan, SA ;
Loucks, SJ ;
Letzring, SA ;
Marshall, FJ ;
McCrory, RL ;
Morse, SFB ;
Seka, W ;
Soures, JM ;
Verdon, CP .
OPTICS COMMUNICATIONS, 1997, 133 (1-6) :495-506
[3]   Inertial fusion with the LMJ [J].
Cavailler, C .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 :B389-B403
[4]   THERMAL ELECTRON-TRANSPORT IN DIRECT-DRIVE LASER FUSION [J].
DELETTREZ, J .
CANADIAN JOURNAL OF PHYSICS, 1986, 64 (08) :932-943
[5]   Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation [J].
Epstein, R .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (05) :2123-2139
[6]   Experimental reduction of laser imprinting and Rayleigh-Taylor growth in spherically compressed, medium-Z-doped plastic targets [J].
Fiksel, G. ;
Hu, S. X. ;
Goncharov, V. A. ;
Meyerhofer, D. D. ;
Sangster, T. C. ;
Smalyuk, V. A. ;
Yaakobi, B. ;
Bonino, M. J. ;
Jungquist, R. .
PHYSICS OF PLASMAS, 2012, 19 (06)
[7]   Ideal laser-beam propagation through high-temperature ignition hohlraum plasmas [J].
Froula, D. H. ;
Divol, L. ;
Meezan, N. B. ;
Dixit, S. ;
Moody, J. D. ;
Neumayer, P. ;
Pollock, B. B. ;
Ross, J. S. ;
Glenzer, S. H. .
PHYSICAL REVIEW LETTERS, 2007, 98 (08)
[8]   Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion Experiments [J].
Froula, D. H. ;
Igumenshchev, I. V. ;
Michel, D. T. ;
Edgell, D. H. ;
Follett, R. ;
Glebov, V. Yu. ;
Goncharov, V. N. ;
Kwiatkowski, J. ;
Marshall, F. J. ;
Radha, P. B. ;
Seka, W. ;
Sorce, C. ;
Stagnitto, S. ;
Stoeckl, C. ;
Sangster, T. C. .
PHYSICAL REVIEW LETTERS, 2012, 108 (12)
[9]   HIGH-EFFICIENCY TARGETS FOR HIGH-GAIN INERTIAL CONFINEMENT FUSION [J].
GARDNER, JH ;
BODNER, SE .
PHYSICS OF FLUIDS, 1986, 29 (08) :2672-2678
[10]   Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies [J].
Glenzer, S. H. ;
MacGowan, B. J. ;
Michel, P. ;
Meezan, N. B. ;
Suter, L. J. ;
Dixit, S. N. ;
Kline, J. L. ;
Kyrala, G. A. ;
Bradley, D. K. ;
Callahan, D. A. ;
Dewald, E. L. ;
Divol, L. ;
Dzenitis, E. ;
Edwards, M. J. ;
Hamza, A. V. ;
Haynam, C. A. ;
Hinkel, D. E. ;
Kalantar, D. H. ;
Kilkenny, J. D. ;
Landen, O. L. ;
Lindl, J. D. ;
LePape, S. ;
Moody, J. D. ;
Nikroo, A. ;
Parham, T. ;
Schneider, M. B. ;
Town, R. P. J. ;
Wegner, P. ;
Widmann, K. ;
Whitman, P. ;
Young, B. K. F. ;
Van Wonterghem, B. ;
Atherton, L. J. ;
Moses, E. I. .
SCIENCE, 2010, 327 (5970) :1228-1231