The functional identification approach for numerical reconstruction of the temperature-dependent thermal-conductivity coefficient

被引:12
作者
Borukhov, V. T. [1 ]
Tsurko, V. A. [1 ]
Zayats, G. M. [1 ]
机构
[1] Natl Acad Sci Belarus, Inst Math, Minsk 220072, BELARUS
关键词
Nonlinear heat-conduction equation; Thermal-conductivity coefficient; Inverse problem; Functional identification; Numerical simulation;
D O I
10.1016/j.ijheatmasstransfer.2008.01.043
中图分类号
O414.1 [热力学];
学科分类号
摘要
The functional identification approach of the thermal-conductivity coefficient for the unsteady-state nonlinear heat-conduction equation is considered. Unlike traditional methods, the proposed algorithm does not utilize approximations of the coefficient with the aid of the specified system of basis functions. The results of computational experiments are presented. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:232 / 238
页数:7
相关论文
共 19 条
[11]  
Krylov V.I., 1962, APPROXIMATE CALCULAT
[12]   AN INVERSE PROBLEM FOR A SEMILINEAR PARABOLIC EQUATION [J].
LORENZI, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 131 :145-166
[13]  
MATSEVITYI JM, 1986, J ENG PHYS THERMOPH+, V6, P1392
[14]  
ORLANDE HRB, 1984, ASME, V116, P1040
[15]  
Ozisik M.N., 2000, Inverse Heat Transfer: Fundamentals and Applications
[16]  
Polyanin A. D., 2005, Methods for Solving Nonlinear Equations of Mathematical Physics and Mechanics
[17]  
RUMYANTSEV CV, 1985, J ENG PHYS THERMOPH+, V49, P932
[18]  
Samarskii A.A., 1989, THEORY DIFFERENCE SC
[19]   Function estimation with Alifanov's iterative regularization method in linear and nonlinear heat conduction problems [J].
Wang, JZ ;
Neto, AJS ;
Neto, FDM ;
Su, JA .
APPLIED MATHEMATICAL MODELLING, 2002, 26 (11) :1093-1111