Ultra-compact injection terahertz laser using the resonant inter-layer radiative transitions in multi-graphene-layer structure

被引:8
作者
Dubinov, Alexander A. [1 ,2 ,3 ]
Bylinkin, Andrey [3 ]
Aleshkin, Vladimir Ya. [1 ,2 ]
Ryzhii, Victor [4 ,5 ,6 ]
Otsuji, Taiichi [4 ]
Svintsov, Dmitry [3 ]
机构
[1] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia
[2] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod 603950, Russia
[3] Moscow Inst Phys & Technol, Lab Mat Optoelect 2D, Moscow, Russia
[4] Tohoku Univ, Elect Commun Res Inst, Sendai, Miyagi 9808577, Japan
[5] Russian Acad Sci, Inst Ultra High Frequency Semicond Elect, Moscow 117105, Russia
[6] Bauman MoscowState Tech Univ, Ctr Photon & Infrared Engn, Moscow 105005, Russia
基金
俄罗斯科学基金会;
关键词
OPTICALLY PUMPED GRAPHENE; QUANTUM-CASCADE LASERS; META-SURFACE; CONDUCTIVITY; PLASMONICS; SYSTEMS;
D O I
10.1364/OE.24.029603
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The optimization of laser resonators represents a crucial issue for the design of terahertz semiconductor lasers with high gain and low absorption loss. In this paper, we put forward and optimize the surface plasmonic metal waveguide geometry for the recently proposed terahertz injection laser based on resonant radiative transitions between tunnel-coupled graphene layers. We find an optimal number of active graphene layer pairs corresponding to the maximum net modal gain. The maximum gain increases with frequency and can be as large as similar to 500 cm(-1) at 8 THz, while the threshold length of laser resonator can be as small as similar to 50 mu m. Our findings substantiate the possibility of ultra-compact voltage-tunable graphene-based lasers operating at room temperature. (C) 2016 Optical Society of America
引用
收藏
页码:29603 / 29612
页数:10
相关论文
共 41 条
[1]   Terahertz laser based on optically pumped graphene: Model and feasibility of realization [J].
Aleshkin, V. Ya. ;
Dubinov, A. A. ;
Ryzhii, V. .
JETP LETTERS, 2009, 89 (02) :63-67
[2]   New frontiers in quantum cascade lasers: high performance room temperature terahertz sources [J].
Belkin, Mikhail A. ;
Capasso, Federico .
PHYSICA SCRIPTA, 2015, 90 (11)
[3]   Mode structure of a quantum cascade laser [J].
Bogdanov, A. A. ;
Suris, R. A. .
PHYSICAL REVIEW B, 2011, 83 (12)
[4]   Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature [J].
Boubanga-Tombet, S. ;
Chan, S. ;
Watanabe, T. ;
Satou, A. ;
Ryzhii, V. ;
Otsuji, T. .
PHYSICAL REVIEW B, 2012, 85 (03)
[5]   Limiting Factors to the Temperature Performance of THz Quantum Cascade Lasers Based on the Resonant-Phonon Depopulation Scheme [J].
Chassagneux, Y. ;
Wang, Q. J. ;
Khanna, S. P. ;
Strupiechonski, E. ;
Coudevylle, J. -R. ;
Linfield, E. H. ;
Davies, A. G. ;
Capasso, F. ;
Belkin, M. A. ;
Colombelli, R. .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2012, 2 (01) :83-92
[6]   Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths [J].
Colombelli, R ;
Capasso, F ;
Gmachl, C ;
Hutchinson, AL ;
Sivco, DL ;
Tredicucci, A ;
Wanke, MC ;
Sergent, AM ;
Cho, AY .
APPLIED PHYSICS LETTERS, 2001, 78 (18) :2620-2622
[7]   Surface-plasmons lasing in double-graphene-layer structures [J].
Dubinov, A. A. ;
Aleshkin, V. Ya ;
Ryzhii, V. ;
Shur, M. S. ;
Otsuji, T. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (04)
[8]   Space-time dispersion of graphene conductivity [J].
Falkovsky, L. A. ;
Varlamov, A. A. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 56 (04) :281-284
[9]   Tunable mid-infrared coherent perfect absorption in a graphene meta-surface [J].
Fan, Yuancheng ;
Liu, Zhe ;
Zhang, Fuli ;
Zhao, Qian ;
Wei, Zeyong ;
Fu, Quanhong ;
Li, Junjie ;
Gu, Changzhi ;
Li, Hongqiang .
SCIENTIFIC REPORTS, 2015, 5
[10]   Tunable Terahertz Meta-Surface with Graphene Cut-Wires [J].
Fan, Yuancheng ;
Shen, Nian-Hai ;
Koschny, Thomas ;
Soukoulis, Costas M. .
ACS PHOTONICS, 2015, 2 (01) :151-156