EXPONENTIAL SOLUTIONS OF EULER-LAGRANGE EQUATIONS FOR FIELD OF LINEAR FRAMES IN NONLINEAR MODEL OF BORN-INFELD TYPE

被引:4
作者
Godlewski, Piotr [1 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, PL-00661 Warsaw, Poland
关键词
field of linear frames; teleparallelism connection; Euler-Lagrange equations; semisimple Lie group; matrix-valued exponential mapping;
D O I
10.1016/S0034-4877(08)00024-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate a model of the field of linear frames on the product manifold M = R x G, where G is a semisimple Lie group. The model is invariant under the natural action of the group GL(n, R) (n = dim M). It results in a modified Born-Infeld-type nonlinearity of field equations. We find two families of solutions of the Euler-Lagrange equations. The solutions are bases for the Lie algebra of left-invariant vector fields on R x G "deformed" by a GL(n, R)-valued mapping of the exponential form.
引用
收藏
页码:167 / 181
页数:15
相关论文
共 20 条
[1]  
[Anonymous], 1978, MAT FYS MEDD DAN VID
[2]  
[Anonymous], FIELD THEORY 1
[3]   COVARIANT CANONICAL FORMALISM FOR THE GROUP MANIFOLD [J].
DADDA, A ;
NELSON, JE ;
REGGE, T .
ANNALS OF PHYSICS, 1985, 165 (02) :384-397
[4]   Quantization of anisotropic rigid body [J].
Godlewski, P .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (12) :2863-2875
[5]   Bitetrad as geometrodynamical variable for GL(2, C)-invariant models of mutually interacting gravitational and bispinor fields [J].
Godlewski, P .
REPORTS ON MATHEMATICAL PHYSICS, 2002, 49 (01) :39-62
[6]  
Godlewski P., 1996, Reports on Mathematical Physics, V38, P29, DOI 10.1016/0034-4877(96)87676-2
[7]  
Godlewski P., 1995, Reports on Mathematical Physics, V35, P77, DOI 10.1016/0034-4877(96)83511-7
[8]  
Godlewski P., 1997, Reports on Mathematical Physics, V40, P71, DOI 10.1016/S0034-4877(97)85619-4
[9]   Solutions of Euler-Lagrange equations for self-interacting field of linear frames on product manifold of group space [J].
Godlewski, P .
REPORTS ON MATHEMATICAL PHYSICS, 2003, 52 (01) :81-88
[10]  
Godlewski P, 2005, DEMONSTRATIO MATH, V38, P819