Integral representations for elliptic functions

被引:3
作者
Dienstfrey, A [1 ]
Huang, JF
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[2] Univ N Carolina, Chapel Hill, NC 27599 USA
关键词
elliptic functions; eisenstein series; planewave expansions; lattice sums;
D O I
10.1016/j.jmaa.2005.04.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive new integral representations for constituents of the classical theory of elliptic functions: the Eisenstein series, and Weierstrass' sigma and zeta functions. The derivations proceed from the Laplace-Mellin representation of multipoles, and an elementary lemma on the summation of 2D geometric series. In addition, we present results concerning the analytic continuation of the Eisenstein series to an entire function in the complex plane, and the value of the conditionally convergent series, denoted by (E) over tilde2 below, as a function of summation over increasingly large rectangles with arbitrary fixed aspect ratio.(1) Published by Elsevier Inc.
引用
收藏
页码:142 / 160
页数:19
相关论文
共 14 条
[1]  
Ahlfors L, 1979, COMPLEX ANAL
[2]  
[Anonymous], 1996, ELLIPTIC FUNCTIONS C
[3]   Multiple zeta values, poly-Bernoulli numbers, and related zeta functions [J].
Arakawa, T ;
Kaneko, M .
NAGOYA MATHEMATICAL JOURNAL, 1999, 153 :189-209
[4]   Convergence of Madelung-like lattice sums [J].
Borwein, D ;
Borwein, JM ;
Pinner, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (08) :3131-3167
[5]   A fast adaptive multipole algorithm in three dimensions [J].
Cheng, H ;
Greengard, L ;
Rokhlin, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 155 (02) :468-498
[6]  
Gradshteyn I.S., 1994, Tables of Integrals, Series, and Products
[7]  
GREENGARD L, 1988, THESIS MIT
[8]   An improved fast multipole algorithm for potential fields [J].
Hrycak, T ;
Rokhlin, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) :1804-1826
[9]   Integral representations of harmonic lattice sums [J].
Huang, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) :5240-5246
[10]   On the estimation of the order of Euler-Zagier multiple zeta-functions [J].
Ishikawa, H ;
Matsumoto, K .
ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (04) :1151-1166