Spectral characterizations of graphs with small spectral radius

被引:5
作者
Wang, JianFeng [1 ]
Belardo, Francesco [2 ]
机构
[1] QingHai Normal Univ, Dept Math, Xining 810008, Qinghai, Peoples R China
[2] Univ Messina, Dept Math, I-98166 Messina, Italy
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Laplacian matrix; Signless Lapalcian; Spectral characterization; Spectral radius; Hoffmann limit value; LARGEST LAPLACIAN EIGENVALUE;
D O I
10.1016/j.laa.2012.06.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph is said to have a small spectral radius if it does not exceed the corresponding Hoffmann limit value. In the case of (signless) Laplacian matrix, the Hoffmann limit value is equal to is an element of+2 = 4.38(+). with E being the real root of x(3) -4x - 4. Here the spectral characterization of connected graphs with small (signless) Laplacian spectral radius is considered. It is shown that all connected graphs with small Laplacian spectral radius are determined by their Laplacian spectra, and all but one of connected graphs with small signless Laplacian spectral radius are determined by their signless Laplacian spectra. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2408 / 2416
页数:9
相关论文
共 28 条
[1]   Graphs whose signless Laplacian spectral radius does not exceed the Hoffman limit value [J].
Belardo, Francesco ;
Li Marzi, Enzo M. ;
Simic, Slobodan K. ;
Wang, Jianfeng .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (11) :2913-2920
[2]   THE GRAPHS WITH SPECTRAL-RADIUS BETWEEN 2 AND 2 SQUARE-ROOT+5 SQUARE-ROOT [J].
BROUWER, AE ;
NEUMAIER, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :273-276
[3]  
Cvetkovic D. M., 1980, SPECTRAL GRAPHS THEO
[4]  
Cvetkovie D., 1982, ARS COMBINATORIA, V14, P225
[5]   Spectral characterization of graphs with index at most √2+√5 [J].
Ghareghani, N. ;
Omidi, G. R. ;
Tayfeh-Rezaie, B. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) :483-489
[6]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238
[7]   ZUSAMMENHANG VON GRAPHENTHEORIE UND MO-THEORIE VON MOLEKELN MIT SYSTEMEN KONJUGIERTER BINDUNGEN [J].
GUNTHARD, HH ;
PRIMAS, H .
HELVETICA CHIMICA ACTA, 1956, 39 (06) :1645-1653
[8]   On limit points of Laplacian spectral radii of graphs [J].
Guo, Ji-Ming .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (07) :1705-1718
[9]   Spectral characterizations of lollipop graphs [J].
Haemers, Willem H. ;
Liu, Xiaogang ;
Zhang, Yuanping .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) :2415-2423
[10]  
Hoffman A.J., 1975, RECENT ADV GRAPH THE, P273