BROWNIAN MOTION IN DIRE STRAITS

被引:13
作者
Holcman, D. [1 ]
Schuss, Z. [2 ]
机构
[1] Ecole Normale Super, IBENS, Grp Appl Math & Computat Biol, F-75005 Paris, France
[2] Tel Aviv Univ, Dept Math, IL-69978 Tel Aviv, Israel
关键词
Brownian motion; first eigenvalue; small hole; diffusion; narrow escape; mean first passage time; stochastic processes; Laplace equation; asymptotic analysis; boundary layer; conformal mapping; mixed Dirichlet-Neumann boundary value problem; 1ST PASSAGE TIME; NARROW ESCAPE; DENDRITIC SPINES; PART II; DIFFUSION; EIGENVALUE; DYNAMICS; EQUILIBRIUM; DOMAINS; RATES;
D O I
10.1137/110857519
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The passage of Brownian motion through a bottleneck in a bounded domain is a rare event, and as the bottleneck radius shrinks to zero the mean time for such passage increases indefinitely. Its calculation reveals the effect of geometry and smoothness on the flux through the bottleneck. We find new behavior of the narrow escape time through bottlenecks in planar and spatial domains and on a surface. Some applications in cellular biology and neurobiology are discussed.
引用
收藏
页码:1204 / 1231
页数:28
相关论文
共 46 条
  • [1] [Anonymous], 1945, THEORY SOUND
  • [2] [Anonymous], 1980, Theory and Application of Stochastic Differential Equations, DOI DOI 10.1063/1.2914346
  • [3] RATES OF EIGENVALUES ON A DUMBBELL DOMAIN - SIMPLE EIGENVALUE CASE
    ARRIETA, JM
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (09) : 3503 - 3531
  • [4] Escape from cavity through narrow tunnel
    Berezhkovskii, Alexander M.
    Barzykin, Alexander V.
    Zitserman, Vladimir Yu.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (24)
  • [5] Diffusion in a dendritic spine: The role of geometry
    Biess, A.
    Korkotian, E.
    Holcman, D.
    [J]. PHYSICAL REVIEW E, 2007, 76 (02):
  • [6] Regulation of AMPA receptor lateral movements
    Borgdorff, AJ
    Choquet, D
    [J]. NATURE, 2002, 417 (6889) : 649 - 653
  • [7] Balancing structure and function at hippocampal dendritic spines
    Bourne, Jennifer N.
    Harris, Kristen M.
    [J]. ANNUAL REVIEW OF NEUROSCIENCE, 2008, 31 : 47 - 67
  • [8] AN ASYMPTOTIC ANALYSIS OF THE MEAN FIRST PASSAGE TIME FOR NARROW ESCAPE PROBLEMS: PART II: THE SPHERE
    Cheviakov, Alexei F.
    Ward, Michael J.
    Straube, Ronny
    [J]. MULTISCALE MODELING & SIMULATION, 2010, 8 (03) : 836 - 870
  • [9] The role of receptor diffusion in the organization of the postsynaptic membrane
    Choquet, D
    Triller, A
    [J]. NATURE REVIEWS NEUROSCIENCE, 2003, 4 (04) : 251 - 265
  • [10] DIFFUSION ON A SPHERE WITH LOCALIZED TRAPS: MEAN FIRST PASSAGE TIME, EIGENVALUE ASYMPTOTICS, AND FEKETE POINTS
    Coombs, Daniel
    Straube, Ronny
    Ward, Michael
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2009, 70 (01) : 302 - 332