Statistical Analysis of Offshore Wind and other VRE Generation to Estimate the Variability in Future Residual Load

被引:4
作者
Koivisto, Matti [1 ]
Maule, Petr [1 ]
Nuno, Edgar [1 ]
Sorensen, Poul [1 ]
Cutululis, Nicolaos [1 ]
机构
[1] Tech Univ Denmark, Dept Wind Energy, Roskilde, Denmark
来源
EERA DEEPWIND'2018, 15TH DEEP SEA OFFSHORE WIND R&D CONFERENCE | 2018年 / 1104卷
关键词
LARGE-SCALE WIND; POWER-GENERATION; SYSTEM; SIMULATION; LOCATIONS; MODEL;
D O I
10.1088/1742-6596/1104/1/012011
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The growing share of variable renewable energy (VRE) sources, which are driven by weather patterns, can cause challenges to the operation and planning of power systems. This paper studies the variability in wind and solar photovoltaic generation in Nordic and Baltic countries. Combined with load time series, the resulting residual load is analysed in 2030 and 2050 scenarios. The correlations between load and VRE generation are studied, and it is shown that a modified 2050 scenario with higher offshore wind and solar generation share shows lower relative residual load variability compared to the 2050 base scenario. The reduction in variability is specifically significant in residual load ramp rates.
引用
收藏
页数:11
相关论文
共 14 条
[1]   A Statistical Model for Hourly Large-Scale Wind and Photovoltaic Generation in New Locations [J].
Ekstrom, Jussi ;
Koivisto, Matti ;
Mellin, Ilkka ;
Millar, Robert John ;
Lehtonen, Matti .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2017, 8 (04) :1383-1393
[2]   A statistical approach for hourly photovoltaic power generation modeling with generation locations without measured data [J].
Ekstrom, Jussi ;
Koivisto, Matti ;
Millar, John ;
Mellin, Ilkka ;
Lehtonen, Matti .
SOLAR ENERGY, 2016, 132 :173-187
[3]   Assessment of large scale wind power generation with new generation locations without measurement data [J].
Ekstrom, Jussi ;
Koivisto, Matti ;
Mellin, Ilkka ;
Millar, John ;
Saarijarvi, Eero ;
Haarla, Liisa .
RENEWABLE ENERGY, 2015, 83 :362-374
[4]   Wind climate estimation using WRF model output: method and model sensitivities over the sea [J].
Hahmann, Andrea N. ;
Vincent, Claire L. ;
Pena, Alfredo ;
Lange, Julia ;
Hasager, Charlotte B. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2015, 35 (12) :3422-3439
[5]   A Reanalysis System for the Generation of Mesoscale Climatographies [J].
Hahmann, Andrea N. ;
Rostkier-Edelstein, Dorita ;
Warner, Thomas T. ;
Vandenberghe, Francois ;
Liu, Yubao ;
Babarsky, Richard ;
Swerdlin, Scott P. .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2010, 49 (05) :954-972
[6]   A statistical model for comparing future wind power scenarios with varying geographical distribution of installed generation capacity [J].
Koivisto, M. ;
Ekstrom, J. ;
Seppanen, J. ;
Mellin, I. ;
Millar, J. ;
Haarla, L. .
WIND ENERGY, 2016, 19 (04) :665-679
[7]   Clustering of Connection Points and Load Modeling in Distribution Systems [J].
Koivisto, Matti ;
Heine, Pirjo ;
Mellin, Ilkka ;
Lehtonen, Matti .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (02) :1255-1265
[8]   Wind and Photovoltaic Large-Scale Regional Models for Hourly Production Evaluation [J].
Marinelli, Mattia ;
Maule, Petr ;
Hahmann, Andrea N. ;
Gehrke, Oliver ;
Norgard, Per B. ;
Cutululis, Nicolaos A. .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015, 6 (03) :916-923
[9]   Simulation of transcontinental wind and solar PV generation time series [J].
Nuno, Edgar ;
Maule, Petr ;
Hahmann, Andrea ;
Cutululis, Nicolaos ;
Sorensen, Poul ;
Karagali, Ioanna .
RENEWABLE ENERGY, 2018, 118 :425-436
[10]   Using Copulas for Modeling Stochastic Dependence in Power System Uncertainty Analysis [J].
Papaefthymiou, George ;
Kurowicka, Dorota .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (01) :40-49