Is nonmetastatic cutaneous melanoma predictable through genomic biomarkers?

被引:3
作者
Branca, Mattia [1 ]
Orso, Samuel [1 ]
Molinari, Roberto C. [1 ]
Xu, Haotian [1 ]
Guerrier, Stephane [2 ,3 ]
Zhang, Yuming [2 ,3 ]
Mili, Nabil [1 ]
机构
[1] Univ Geneva, Geneva Sch Econ & Management, Res Ctr Stat, Bd Pont Arve 40, CH-1205 Geneva, Switzerland
[2] Penn State Univ, Eberly Coll Sci, Dept Stat, State Coll, PA USA
[3] Penn State Univ, Eberly Coll Sci, Inst CyberSci, State Coll, PA USA
关键词
genomic biomarkers; metastatic cutaneous melanoma; prediction error; predictive-based regression algorithm; RAS; EXPRESSION; KINASE;
D O I
10.1097/CMR.0000000000000412
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Cutaneous melanoma is a highly aggressive skin cancer whose treatment and prognosis are critically affected by the presence of metastasis. In this study, we address the following issue: which gene transcripts and what kind of interactions between them can allow to predict nonmetastatic from metastatic melanomas with a high level of accuracy? We carry out a meta-analysis on the first gene expression set of the Leeds melanoma cohort, as made available online on 11 May 2016 through the ArrayExpress platform with MicroArray Gene Expression number 4725. According to the authors, primary melanoma mRNA expression was measured in 204 tumours using an illumina DASL HT12 4 whole-genome array. The tumour transcripts were selected through a recently proposed predictive-based regression algorithm for gene-network selection. A set of 64 equivalent models, each including only two gene transcripts, were each sufficient to accurately classify primary tumours into metastatic and nonmetastatic melanomas. The sensitivity and specificity of the genomic-based models were, respectively, 4% (95% confidence interval: 0.11-21.95%) and 99% (95% confidence interval: 96.96-99.99%). The very high specificity coupled with a significantly large positive likelihood ratio leads to a conclusive increase in the likelihood of disease when these biomarkers are present in the primary tumour. In conjunction with other highly sensitive methods, this approach can aspire to be part of the future standard diagnosis methods for the screening of metastatic cutaneous melanoma. The small dimension of the selected transcripts models enables easy handling of large-scale genomic testing procedures. Moreover, some of the selected transcripts have an understandable link with what is known about cutaneous melanoma oncogenesis, opening a window on the molecular pathways underlying the metastatic process of this disease. Copyright (C) 2018 Wolters Kluwer Health, Inc. All rights reserved.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 32 条
[1]   Cutaneous Malignant Melanoma: Update on Diagnostic and Prognostic Biomarkers [J].
Abbas, Ossama ;
Miller, Daniel D. ;
Bhawan, Jag .
AMERICAN JOURNAL OF DERMATOPATHOLOGY, 2014, 36 (05) :363-379
[2]   Genomic Classification of Cutaneous Melanoma [J].
Akbani, Rehan ;
Akdemir, Kadir C. ;
Aksoy, B. Arman ;
Albert, Monique ;
Ally, Adrian ;
Amin, Samirkumar B. ;
Arachchi, Harindra ;
Arora, Arshi ;
Auman, J. Todd ;
Ayala, Brenda ;
Baboud, Julien ;
Balasundaram, Miruna ;
Balu, Saianand ;
Barnabas, Nandita ;
Bartlett, John ;
Bartlett, Pam ;
Bastian, Boris C. ;
Baylin, Stephen B. ;
Behera, Madhusmita ;
Belyaev, Dmitry ;
Benz, Christopher ;
Bernard, Brady ;
Beroukhim, Rameen ;
Bir, Natalie ;
Black, Aaron D. ;
Bodenheimer, Tom ;
Boice, Lori ;
Boland, Genevieve M. ;
Bono, Riccardo ;
Bootwalla, Moiz S. ;
Bosenberg, Marcus ;
Bowen, Jay ;
Bowlby, Reanne ;
Bristow, Christopher A. ;
Brockway-Lunardi, Laura ;
Brooks, Denise ;
Brzezinski, Jakub ;
Bshara, Wiam ;
Buda, Elizabeth ;
Burns, William R. ;
Butterfield, Yaron S. N. ;
Button, Michael ;
Calderone, Tiffany ;
Cappellini, Giancarlo Antonini ;
Carter, Candace ;
Carter, Scott L. ;
Cherney, Lynn ;
Cherniack, Andrew D. ;
Chevalier, Aaron ;
Chin, Lynda .
CELL, 2015, 161 (07) :1681-1696
[3]   Intracellular and intercellular signaling networks in cancer initiation, development and precision anti-cancer therapy RAS acts as contextual signaling hub [J].
Csermely, Peter ;
Korcsmaros, Tamas ;
Nussinov, Ruth .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2016, 58 :55-59
[4]   Statistics notes - Diagnostic tests 4: likelihood ratios [J].
Deeks, JJ ;
Altman, DG .
BRITISH MEDICAL JOURNAL, 2004, 329 (7458) :168-169
[5]   The Human Antibody Fragment DIATHIS1 Specific for CEACAM1 Enhances Natural Killer Cell Cytotoxicity Against Melanoma Cell Lines In Vitro [J].
Dupuis, Maria L. ;
Fiori, Valentina ;
Soriani, Alessandra ;
Ricci, Biancamaria ;
Dominici, Sabrina ;
Moricoli, Diego ;
Ascione, Alessandro ;
Santoni, Angela ;
Magnani, Mauro ;
Cianfriglia, Maurizio .
JOURNAL OF IMMUNOTHERAPY, 2015, 38 (09) :357-370
[6]   Survival of cutaneous melanoma based on sex, age, and stage in the United States, 1992-2011 [J].
Enninga, Elizabeth Ann L. ;
Moser, Justin C. ;
Weaver, Amy L. ;
Markovic, Svetomir N. ;
Brewer, Jerry D. ;
Leontovich, Alexey A. ;
Hieken, Tina J. ;
Shuster, Lynne ;
Kottschade, Lisa A. ;
Olariu, Ariadna ;
Mansfield, Aaron S. ;
Dronca, Roxana S. .
CANCER MEDICINE, 2017, 6 (10) :2203-2212
[7]   Burden of illness for metastatic melanoma in Canada, 2011-2013 [J].
Ernst, D. S. ;
Petrella, T. ;
Joshua, A. M. ;
Hamou, A. ;
Thabane, M. ;
Vantyghem, S. ;
Gwadry-Sridhar, F. .
CURRENT ONCOLOGY, 2016, 23 (06) :E563-E570
[8]   A Predictive Based Regression Algorithm for Gene Network Selection [J].
Guerrier, Stephane ;
Mili, Nabil ;
Molinari, Roberto ;
Orso, Samuel ;
Avella-Medina, Marco ;
Ma, Yanyuan .
FRONTIERS IN GENETICS, 2016, 7
[9]  
Hastie T., 2009, ELEMENTS STAT LEARNI, DOI DOI 10.1007/978-0-387-84858-7
[10]   Bayesian model averaging: A tutorial [J].
Hoeting, JA ;
Madigan, D ;
Raftery, AE ;
Volinsky, CT .
STATISTICAL SCIENCE, 1999, 14 (04) :382-401