Direct Observation of Interfacial Mechanical Failure in Thiophosphate Solid Electrolytes with Operando X-Ray Tomography

被引:30
作者
Madsen, Kenneth E. [1 ]
Bassett, Kimberly L. [1 ]
Ta, Kim [1 ]
Sforzo, Brandon A. [2 ]
Matusik, Katarzyna E. [3 ]
Kastengren, Alan L. [3 ]
Gewirth, Andrew A. [1 ]
机构
[1] Univ Illinois, Dept Chem, 600 S Mathews Ave, Urbana, IL 61801 USA
[2] Argonne Natl Lab, Energy Syst Div, Lemont, IL 60439 USA
[3] Argonne Natl Lab, X Ray Sci Div, Lemont, IL 60439 USA
基金
美国国家科学基金会;
关键词
Li10GeP2S12(LGPS); mechanical failure; solid electrolytes; solvates; X-ray tomography; LITHIUM-METAL ANODE; STATE LI-ION; ELASTIC PROPERTIES; THERMAL RUNAWAY; BATTERY; STABILITY; DEFORMATION; DEGRADATION; LI10GEP2S12; KINETICS;
D O I
10.1002/admi.202000751
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein, the mechanical behaviors of Li10GeP2S12(LGPS) solid electrolytes during electrochemical cycling using operando X-ray tomography are investigated. It is demonstrated that the bulk mechanical decomposition of LGPS when cycled against lithium is a direct result of electrochemical reduction of the solid electrolyte at the LGPS/Li(0)interface. The reductive decomposition of LGPS during lithium plating results in the formation of low-density domains at the electrode/electrolyte interface, which impose sufficient mechanical stress on the underlying LGPS to crack the SE pellet. The critical stress developed prior to pellet fracture is significantly lower than the bulk shear modulus of LGPS, suggesting that the electrochemical instability of LGPS dramatically worsens the mechanical stability of the material near the LGPS/Li(0)interface. It is also shown that the application of a highly concentrated liquid electrolyte to the LGPS surface suppresses the reductive decomposition of LGPS, improving both the electrochemical performance and mechanical stability of the bulk LGPS solid electrolyte.
引用
收藏
页数:12
相关论文
共 60 条
[1]  
AUNER N, 1996, SYNTHETIC METHODS OR, V2
[2]  
Bard AJ., 2001, Electrochemical methods: fundamentals and applications
[3]  
Berger M., XCOM PHOTON CROSS SE
[4]   A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte [J].
Bonnick, Patrick ;
Niitani, Keita ;
Nose, Masafumi ;
Suto, Koji ;
Arthur, Timothy S. ;
Muldoon, John .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (42) :24173-24179
[5]   LAGPILi Interface Modification through a Wetted Polypropylene Interlayer for Solid State Li-Ion and Li-S batteries [J].
Bosubahu, Dasari ;
Sivaraj, Jeevanantham ;
Sampathkumar, Ramakumar ;
Ramesha, Kannadka .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (06) :4118-4125
[6]   Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application [J].
Chen, Shaojie ;
Xie, Dongjiu ;
Liu, Gaozhan ;
Mwizerwa, Jean Pierre ;
Zhang, Qiang ;
Zhao, Yanran ;
Xu, Xiaoxiong ;
Yao, Xiayin .
ENERGY STORAGE MATERIALS, 2018, 14 :58-74
[7]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[8]   Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes [J].
Dewald, Georg F. ;
Ohno, Saneyuki ;
Kraft, Marvin A. ;
Koerver, Raimund ;
Till, Paul ;
Vargas-Barbosa, Nella M. ;
Janek, Juergen ;
Zeier, Wolfgang G. .
CHEMISTRY OF MATERIALS, 2019, 31 (20) :8328-8337
[9]   Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: challenges, materials, construction, and characterization [J].
Du, Mingjie ;
Liao, Kaiming ;
Lu, Qian ;
Shao, Zongping .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (06) :1780-1804
[10]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267