Habitats in DCE-MRI to Predict Clinically Significant Prostate Cancers

被引:17
|
作者
Parra, Nestor Andres [1 ]
Lu, Hong [1 ,4 ]
Choi, Jung [2 ]
Gage, Kenneth [2 ]
Pow-Sang, Julio [3 ]
Willies, Robert J. [1 ,2 ]
Balagurunathan, Yoganand [1 ]
机构
[1] HL Moffitt Canc Ctr, Dept Canc Physiol, Tampa, FL 33612 USA
[2] HL Moffitt Canc Ctr, Dept Radiol, Tampa, FL 33612 USA
[3] HL Moffitt Canc Ctr, Dept Urol, Tampa, FL 33612 USA
[4] Tianjin Med Univ, Canc Inst & Hosp, Tianjin, Peoples R China
关键词
MRI; prostate cancer; machine learning; radiomics; habitats; DCE; AGGRESSIVENESS;
D O I
10.18383/j.tom.2018.00037
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Prostate cancer identification and assessment of clinical significance continues to be a challenge. Routine multiparametric magnetic resonance imaging has shown to be useful in assessing disease progression. Although dynamic contrast-enhanced imaging (DCE) has the ability to characterize perfusion across time and has shown enormous utility, radiological assessment (Prostate Imaging-Reporting and Data System or PIRADS version 2) has limited its use owing to lack of consistency and nonquantitative nature. In our work, we propose a systematic methodology to quantify perfusion dynamics for the DCE imaging. Using these metrics, 7 different subregions or perfusion habitats of the targeted lesions are localized and related to clinical significance. We found that quantitative features describing the habitat based on the late area under the DCE time-activity curve was a good predictor of clinical significance disease. The best predictive feature in the habitat had an AUC of 0.82, CI [0.81-0.83].
引用
收藏
页码:68 / 76
页数:9
相关论文
共 50 条
  • [1] Quantitative DCE Dynamics on Transformed MR Imaging Discriminates Clinically Significant Prostate Cancer
    Wei, Zhouping
    Iluppangama, Malinda
    Qi, Jin
    Choi, Jung W.
    Yu, Alice
    Gage, Kenneth
    Chumbalkar, Vaibhav
    Dhilon, Jasreman
    Balaji, K. C.
    Venkataperumal, Satish
    Hernandez, David J.
    Park, Jong
    Yedjou, Clement
    Alo, Richard
    Gatenby, Robert A.
    Pow-Sang, Julio
    Balagurunanthan, Yoganand
    CANCER CONTROL, 2024, 31
  • [2] Use of DCE-MRI in female affecting cancers
    Romeo, Valeria
    Cavaliere, Carlo
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [3] Pharmacokinetic modeling of dynamic contrast-enhanced (DCE)-MRI in PI-RADS category 3 peripheral zone lesions: preliminary study evaluating DCE-MRI as an imaging biomarker for detection of clinically significant prostate cancers
    Abreu-Gomez, Jorge
    Lim, Christopher
    Cron, Gregory O.
    Krishna, Satheesh
    Sadoughi, Nima
    Schieda, Nicola
    ABDOMINAL RADIOLOGY, 2021, 46 (09) : 4370 - 4380
  • [4] Performance of Ultrafast DCE-MRI for Diagnosis of Prostate Cancer
    Chatterjee, Aritrick
    He, Dianning
    Fan, Xiaobing
    Wang, Shiyang
    Szasz, Teodora
    Yousuf, Ambereen
    Pineda, Federico
    Antic, Tatjana
    Mathew, Melvy
    Karczmar, Gregory S.
    Oto, Aytekin
    ACADEMIC RADIOLOGY, 2018, 25 (03) : 349 - 358
  • [5] Pharmacokinetic modeling of dynamic contrast-enhanced (DCE)-MRI in PI-RADS category 3 peripheral zone lesions: preliminary study evaluating DCE-MRI as an imaging biomarker for detection of clinically significant prostate cancers
    Jorge Abreu-Gomez
    Christopher Lim
    Gregory O. Cron
    Satheesh Krishna
    Nima Sadoughi
    Nicola Schieda
    Abdominal Radiology, 2021, 46 : 4370 - 4380
  • [6] Radiomics from multisite MRI and clinical data to predict clinically significant prostate cancer
    Krauss, Wolfgang
    Frey, Janusz
    Heydorn Lagerloef, Jakob
    Liden, Mats
    Thunberg, Per
    ACTA RADIOLOGICA, 2024, 65 (03) : 307 - 317
  • [7] Prospective Inclusion of Apparent Diffusion Coefficients in Multiparametric Prostate MRI Structured Reports: Discrimination of Clinically Insignificant and Significant Cancers
    Costa, Daniel N.
    Xi, Yin
    Aziz, Muhammad
    Passoni, Niccolo
    Shakir, Nabeel
    Goldberg, Kenneth
    Francis, Franto
    Roehrborn, Claus G.
    de Leon, Alberto Diaz
    Pedrosa, Ivan
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (01) : 109 - 116
  • [8] Nonnegative Matrix Factorization of DCE-MRI for Prostate Cancer Classification
    Hou, Aijie
    Peng, Yahui
    Li, Xinchun
    SIXTH INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2021, 11913
  • [9] Cell membrane water exchange effects in prostate DCE-MRI
    Li, Xin
    Priest, Ryan A.
    Woodward, William J.
    Siddiqui, Faisal
    Beer, Tomasz M.
    Garzotto, Mark G.
    Rooney, William D.
    Springer, Charles S., Jr.
    JOURNAL OF MAGNETIC RESONANCE, 2012, 218 : 77 - 85
  • [10] Beyond Multiparametric MRI and towards Radiomics to Detect Prostate Cancer: A Machine Learning Model to Predict Clinically Significant Lesions
    Gaudiano, Caterina
    Mottola, Margherita
    Bianchi, Lorenzo
    Corcioni, Beniamino
    Cattabriga, Arrigo
    Cocozza, Maria Adriana
    Palmeri, Antonino
    Coppola, Francesca
    Giunchi, Francesca
    Schiavina, Riccardo
    Fiorentino, Michelangelo
    Brunocilla, Eugenio
    Golfieri, Rita
    Bevilacqua, Alessandro
    CANCERS, 2022, 14 (24)