A complex Jensen-Shannon divergence in complex evidence theory with its application in multi-source information fusion

被引:37
|
作者
Fan, Wentao [1 ]
Xiao, Fuyuan [1 ]
机构
[1] Chongqing Univ, Sch Big Data & Software Engn, Chongqing 401331, Peoples R China
关键词
Complex evidence theory; Complex mass functions; Complex Jensen-Shannon divergence; Multi-source information fusion; COMBINING BELIEF FUNCTIONS; DECISION-MAKING; MODEL; DISTANCE;
D O I
10.1016/j.engappai.2022.105362
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-source information fusion has attracted considerable attention in the few past years and plays a great role in real applications. However, the uncertainty or conflict will make the fusion results unreasonable. Furthermore, the information may be collected in the form of complex number that cannot be processed by existing methods. In this article, to handle the above issues, the complex evidence theory (CET) is exploited. CET is the generalization of Dempster-Shafer evidence theory, where the mass function is modeled by complex number, called complex mass function (CMF). In order to deal with multi-source information fusion from the perspective of the complex plane, a new Complex Jensen-Shannon divergence (CJS divergence) is presented in this article. The proposed CJS divergence can effectively measure the conflict between two CMFs, and it satisfies the properties of boundedness, symmetry and nondegeneracy. In addition, for a better combination result, we have adjusted the complex Dempster's rule of combination, which is called the reinforced complex evidence combination rule (RCECR). Then an algorithm for multi-source information fusion is proposed based on the CJS divergence and the RCECR. Some numerical examples and two applications in target identification and medical diagnosis illustrate the effectiveness of the new approach.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Research on the Method of Multi-source Information Fusion Based on Bayesian Theory
    Cheng, Hao
    Zhao, Jin
    Fu, Mian
    PROCEEDINGS OF 2018 IEEE 3RD ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC 2018), 2018, : 1760 - 1763
  • [32] Multi-source information fusion based on rough set theory: A review
    Zhang, Pengfei
    Li, Tianrui
    Wang, Guoqiang
    Luo, Chuan
    Chen, Hongmei
    Zhang, Junbo
    Wang, Dexian
    Yu, Zeng
    INFORMATION FUSION, 2021, 68 : 85 - 117
  • [33] Multi-source Data Fusion Approach Based on Improved Evidence Theory
    Wang, Yongwei
    Yuan, Kaiguo
    Liu, Yunan
    Jia, Hongyong
    Qiu, Wei
    JOURNAL OF COMPUTERS, 2013, 8 (11) : 2864 - 2872
  • [34] A novel weighted complex evidence combination with its application in multisource information fusion
    Huaping He
    Liting He
    Fuyuan Xiao
    Soft Computing, 2023, 27 : 9293 - 9305
  • [35] A novel weighted complex evidence combination with its application in multisource information fusion
    He, Huaping
    He, Liting
    Xiao, Fuyuan
    SOFT COMPUTING, 2023, 27 (14) : 9293 - 9305
  • [36] A multi-source information fusion method for ship target recognition based on Bayesian inference and evidence theory
    Zhang, Yu
    Xiao, Qunli
    Deng, Xinyang
    Jiang, Wen
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (03) : 2331 - 2346
  • [37] A new belief divergence measure for Dempster-Shafer theory based on belief and plausibility function and its application in multi-source data fusion
    Wang, Hongfei
    Deng, Xinyang
    Jiang, Wen
    Geng, Jie
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 97 (97)
  • [38] Application of multi-source information fusion based on D-S evidence theory in insulation defect identification of DC XLPE cable
    Xu, Yongpeng
    Li, Zhe
    Huang, Guanglei
    Qian, Yong
    Sheng, Gehao
    Jiang, Xiuchen
    HIGH VOLTAGE, 2021, 6 (04) : 599 - 607
  • [39] Belief structure-based Pythagorean fuzzy entropy and its application in multi-source information fusion
    Mao, Kun
    Wang, Yanni
    Ye, Jiangang
    Zhou, Wen
    Lin, Yu
    Fang, Bin
    APPLIED SOFT COMPUTING, 2023, 148
  • [40] Multi-Source Information Fusion Model of Traffic Lifeline Based on Improved D-S Evidence Theory
    Li, Xianyu
    Guo, Zhongyin
    2018 26TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS (GEOINFORMATICS 2018), 2018,