Dynamic Analysis and Circuit Implementation of a New 4D Lorenz-Type Hyperchaotic System

被引:8
作者
Al-khedhairi, A. [1 ]
Elsonbaty, A. [2 ,3 ]
Abdel Kader, A. H. [3 ]
Elsadany, A. A. [2 ,4 ]
机构
[1] King Saud Univ, Dept Stat & Operat Res, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
[2] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Studies, Dept Math, Al Kharj, Saudi Arabia
[3] Mansoura Univ, Dept Engn Math & Phys, Fac Engn, Mansoura 35516, Egypt
[4] Suez Canal Univ, Fac Comp & Informat, Dept Basic Sci, Ismailia 41522, Egypt
关键词
BIFURCATION-ANALYSIS; CHAOS CONTROL; SYNCHRONIZATION; REALIZATION;
D O I
10.1155/2019/6581586
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper attempts to further extend the results of dynamical analysis carried out on a recent 4D Lorenz-type hyperchaotic system while exploring new analytical results concerns its local and global dynamics. In particular, the equilibrium points of the system along with solution's continuous dependence on initial conditions are examined. Then, a detailed Z2 symmetrical Bogdanov-Takens bifurcation analysis of the hyperchaotic system is performed. Also, the possible first integrals and global invariant surfaces which exist in system's phase space are analytically found. Theoretical results reveal the rich dynamics and the complexity of system behavior. Finally, numerical simulations and a proposed circuit implementation of the hyperchaotic system are provided to validate the present analytical study of the system.
引用
收藏
页数:17
相关论文
共 50 条
[21]   A new hyperchaotic system from T chaotic system: dynamical analysis, circuit implementation, control and synchronization [J].
Emiroglu, Selcuk ;
Akgul, Akif ;
Adiyaman, Yusuf ;
Gumus, Talha Enes ;
Uyaroglu, Yilmaz ;
Yalcin, Mehmet Ali .
CIRCUIT WORLD, 2022, 48 (02) :265-277
[22]   Analysis and circuit implementation for the fractional-order Lorenz system [J].
Jia Hong-Yan ;
Chen Zeng-Qiang ;
Xue Wei .
ACTA PHYSICA SINICA, 2013, 62 (14)
[23]   Analysis, circuit implementation and synchronization control of a hyperchaotic system [J].
Yan, Shaohui ;
Wang, Ertong ;
Wang, Qiyu ;
Sun, Xi ;
Ren, Yu .
PHYSICA SCRIPTA, 2021, 96 (12)
[24]   Chaos Synchronization for Hyperchaotic Lorenz-Type System via Fuzzy-Based Sliding-Mode Observer [J].
Plata, Corina ;
Prieto, Pablo J. ;
Ramirez-Villalobos, Ramon ;
Coria, Luis N. .
MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2020, 25 (01)
[25]   Cryptanalysis of Image Cryptosystem Using Synchronized 4D Lorenz Stenflo Hyperchaotic Systems [J].
Ahmad, Musheer ;
Aijaz, Aisha ;
Ansari, Subia ;
Siddiqui, Mohammad Moazzam ;
Masood, Sarfaraz .
INFORMATION AND DECISION SCIENCES, 2018, 701 :367-376
[26]   Hopf Bifurcation, Periodic Solutions, and Control of a New 4D Hyperchaotic System [J].
Liu, Yu ;
Zhou, Yan ;
Guo, Biyao .
MATHEMATICS, 2023, 11 (12)
[27]   Dynamic Analysis and FPGA Implementation of a New, Simple 5D Memristive Hyperchaotic Sprott-C System [J].
Yu, Fei ;
Zhang, Wuxiong ;
Xiao, Xiaoli ;
Yao, Wei ;
Cai, Shuo ;
Zhang, Jin ;
Wang, Chunhua ;
Li, Yi .
MATHEMATICS, 2023, 11 (03)
[28]   Global dynamical analysis of the integer and fractional 4D hyperchaotic Rabinovich system [J].
Ren, Lei ;
Lin, Ming-Hung ;
Abdulwahab, Abdulkareem ;
Ma, Jun ;
Saberi-Nik, Hassan .
CHAOS SOLITONS & FRACTALS, 2023, 169
[29]   CONVERTING A GENERAL 3-D AUTONOMOUS QUADRATIC SYSTEM TO AN EXTENDED LORENZ-TYPE SYSTEM [J].
Hua, Cuncai ;
Chen, Guanrong ;
Li, Qunhong ;
Ge, Juhong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (02) :475-488
[30]   Complexity Analysis and DSP Implementation of the Fractional-Order Lorenz Hyperchaotic System [J].
He, Shaobo ;
Sun, Kehui ;
Wang, Huihai .
ENTROPY, 2015, 17 (12) :8299-8311