SOLUTIONS OF A DERIVATIVE NONLINEAR SCHRODINGER HIERARCHY AND ITS SIMILARITY REDUCTION

被引:27
作者
Kakei, Saburo [1 ]
Kikuchi, Tetsuya [2 ]
机构
[1] Rikkyo Univ, Dept Math, Toshima Ku, Tokyo 1718501, Japan
[2] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
关键词
D O I
10.1017/S0017089505002326
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The hierarchy structure of a derivative nonlinear Schrodinger equation is investigated in terms of the Sato-Segal-Wilson formulation. Special solutions are constructed as ratios of Wronski determinants. Relations to the Painleve IV and the discrete Painleve I are discussed by applying a similarity reduction.
引用
收藏
页码:99 / 107
页数:9
相关论文
共 14 条
[1]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .2. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1006-1015
[2]  
DATE E, 1982, OSAKA J MATH, V19, P125
[3]  
Drinfeld V.G., 1984, J SOVIET MATH, V30, P1975
[4]   SOLITON-SOLUTIONS OF NON-LINEAR EVOLUTION-EQUATIONS [J].
FREEMAN, NC .
IMA JOURNAL OF APPLIED MATHEMATICS, 1984, 32 (1-3) :125-145
[5]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3
[6]  
Gerdjikov V. S., 1983, Bulgarian Journal of Physics, V10, P130
[7]   From continuous Painleve IV to the asymmetric discrete Painleve I [J].
Grammaticos, B ;
Ramani, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (27) :5787-5798
[8]   BILINEARIZATION OF A GENERALIZED DERIVATIVE NONLINEAR SCHRODINGER-EQUATION [J].
KAKEI, S ;
SASA, N ;
SATSUMA, J .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (05) :1519-1523
[9]  
Kakei S, 2004, INT MATH RES NOTICES, V2004, P4181
[10]   Hierarchy of (2+1)-dimensional nonlinear Schrodinger equation, self-dual Yang-Mills equation, and toroidal Lie algebras [J].
Kakei, S ;
Ikeda, T ;
Takasaki, K .
ANNALES HENRI POINCARE, 2002, 3 (05) :817-845