Entanglement and Irreversible Structural Transformation in Co(II) Coordination Polymers Based on Isomeric Bis-pyridyl-bis-amide Ligands

被引:29
作者
Hsu, Chih-Hsun [1 ]
Huang, Wei-Chun [1 ]
Yang, Xiang-Kai [1 ]
Yang, Chih-Tung [1 ]
Chhetri, Pradhumna Mahat [1 ,2 ]
Chen, Jhy-Der [1 ]
机构
[1] Chung Yuan Christian Univ, Dept Chem, Chungli, Taiwan
[2] Tribhuvan Univ, Dept Chem, Amrit Sci Campus, Kathmandu, Nepal
关键词
COMPLEXES; NETWORKS; NETS;
D O I
10.1021/acs.cgd.8b01706
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Four coordination polymers constructed from the flexible isomeric bis-pyridyl-bis-amide (bpba) ligands, N,N'-di(3-pyridyl)suberoamide (L-1) and N,N'-di(4-pyridyl)suberoamide (L-2), and the auxiliary 1,4-naphthalenedicarboxylic acid (1,4-H2NDC), including [Co(L-1)(1.5)(1,4-NDC)(H2O)](n), 1, [Co-3(L-1)(1.5)(1,4-NDC)(3)(EtOH)(n), 2, {[Co(L-2)(1.5)(1,4-NDC)]center dot H2O}(n), 3, and {[Co(L-2)(0.5)(1,4-NDC)]center dot EtOH}(n), 4, have been synthesized and structurally characterized by using single crystal X-ray crystallography. Complex 1 forms a two-dimensional layer with double edges and 2 exhibits a unique three-dimensional (3D) self-catenated framework with the (4(8).6(6).8)-6T60 topology, while 3 displays a 3D framework with the highest 5-fold interpenetration for the bnn topology and 4 shows a 3D 2-fold interpenetrated framework with the pcu topology. The donor atom positions of the L-1 and L-2 ligands and the identity of the solvents play important roles in determining the structural diversity. Moreover, irreversible structural transformation from 2 to 1 has been verified by immersing crystals of 2 into water. The coordination ability of the CH3CH2OH molecule in 2 and the thermal stability of 1 govern the irreversible structural transformation.
引用
收藏
页码:1728 / 1737
页数:10
相关论文
共 28 条
[1]   Luminescent metal-organic frameworks [J].
Allendorf, M. D. ;
Bauer, C. A. ;
Bhakta, R. K. ;
Houk, R. J. T. .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (05) :1330-1352
[2]  
Batten SR, 1998, ANGEW CHEM INT EDIT, V37, P1460, DOI 10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO
[3]  
2-Z
[4]   Applied Topological Analysis of Crystal Structures with the Program Package ToposPro [J].
Blatov, Vladislav A. ;
Shevchenko, Alexander P. ;
Proserpio, Davide M. .
CRYSTAL GROWTH & DESIGN, 2014, 14 (07) :3576-3586
[5]   Deconstruction of Crystalline Networks into Underlying Nets: Relevance for Terminology Guidelines and Crystallographic Databases [J].
Bonneau, Charlotte ;
O'Keeffe, Michael ;
Proserpio, Davide M. ;
Blatov, Vladislav A. ;
Batten, Stuart R. ;
Bourne, Susan A. ;
Lah, Myoung Soo ;
Eon, Jean-Guillaume ;
Hyde, Stephen T. ;
Wiggin, Seth B. ;
Ohrstrom, Lars .
CRYSTAL GROWTH & DESIGN, 2018, 18 (06) :3411-3418
[6]  
Bruker AXS, 2008, APEX2 V2008 6 SAD AB
[7]   Polycatenation, polythreading and polyknotting in coordination network chemistry [J].
Carlucci, L ;
Ciani, G ;
Proserpio, DM .
COORDINATION CHEMISTRY REVIEWS, 2003, 246 (1-2) :247-289
[8]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[9]   Ag(l) Complexes Containing Flexible N,N'-Di(3-pyridyl)adipoamide Ligands: Syntheses, Structures, Ligand Conformations, and Crystal-to-Crystal Transformations [J].
Cheng, Pei-Chi ;
Yeh, Chun-Wei ;
Hsu, Wayne ;
Chen, Tsun-Ren ;
Wang, Hong-Wen ;
Chen, Jhy-Der ;
Wang, Ju-Chun .
CRYSTAL GROWTH & DESIGN, 2012, 12 (02) :943-953
[10]   Mercury halide coordination polymers exhibiting reversible structural transformation [J].
Chhetri, Pradhumna Mahat ;
Yang, Xiang-Kai ;
Chen, Jhy-Der .
CRYSTENGCOMM, 2018, 20 (15) :2126-2134