A principal component approach to improve association testing with polygenic risk scores

被引:56
作者
Coombes, Brandon J. [1 ]
Ploner, Alexander [2 ]
Bergen, Sarah E. [2 ]
Biernacka, Joanna M. [1 ,3 ]
机构
[1] Mayo Clin, Dept Hlth Sci Res, Rochester, MN 55905 USA
[2] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden
[3] Mayo Clin, Dept Psychiat & Psychol, Rochester, MN USA
关键词
permutation; polygenic risk scores; principal component analysis; weighting; GENOME-WIDE ASSOCIATION; SCHIZOPHRENIA; METAANALYSIS; GWAS;
D O I
10.1002/gepi.22339
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Polygenic risk scores (PRSs) have become an increasingly popular approach for demonstrating polygenic influences on complex traits and for establishing common polygenic signals between different traits. PRSs are typically constructed using pruning and thresholding (P+T), but the best choice of parameters is uncertain; thus multiple settings are used and the best is chosen. Optimization can lead to inflated Type I error. Permutation procedures can correct this, but they can be computationally intensive. Alternatively, a single parameter setting can be chosen a priori for the PRS, but choosing suboptimal settings results in loss of power. We propose computing PRSs under a range of parameter settings, performing principal component analysis (PCA) on the resulting set of PRSs, and using the first PRS-PC in association tests. The first PC reweights the variants included in the PRS to achieve maximum variation over all PRS settings used. Using simulations and a real data application to study PRS association with bipolar disorder and psychosis in bipolar disorder, we compare the performance of the proposed PRS-PCA approach with a permutation test and an a priori selectedp-value threshold. The PRS-PCA approach is simple to implement, outperforms the other strategies in most scenarios, and provides an unbiased estimate of prediction performance.
引用
收藏
页码:676 / 686
页数:11
相关论文
共 39 条
[1]   Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk [J].
Alnaes, Dag ;
Kaufmann, Tobias ;
van der Meer, Dennis ;
Cordova-Palomera, Aldo ;
Rokicki, Jaroslav ;
Moberget, Torgeir ;
Bettella, Francesco ;
Agartz, Ingrid ;
Barch, Deanna M. ;
Bertolino, Alessandro ;
Brandt, Christine L. ;
Cervenka, Simon ;
Djurovic, Srdjan ;
Nhat Trung Doan ;
Eisenacher, Sarah ;
Fatouros-Bergman, Helena ;
Flyckt, Lena ;
Di Giorgio, Annabella ;
Haatveit, Beathe ;
Jonsson, Erik G. ;
Kirsch, Peter ;
Lund, Martina J. ;
Meyer-Lindenberg, Andreas ;
Pergola, Giulio ;
Schwarz, Emanuel ;
Smeland, Olav B. ;
Quarto, Tiziana ;
Zink, Mathias ;
Andreassen, Ole A. ;
Westlye, Lars T. ;
Farde, Lars ;
Collste, Karin ;
Victorsson, Pauliina ;
Engberg, Goran ;
Erhardt, Sophie ;
Malmqvist, Anna ;
Hedberg, Mikael ;
Orhan, Funda ;
Sellgren, Carl M. ;
Schwieler, Lilly ;
Piehl, Fredrik .
JAMA PSYCHIATRY, 2019, 76 (07) :739-748
[2]  
[Anonymous], 2018, R LANG ENV STAT COMP
[3]   Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis [J].
Arnold, Paul D. ;
Askland, Kathleen D. ;
Barlassina, Cristina ;
Bellodi, Laura ;
Bienvenu, O. J. ;
Black, Donald ;
Bloch, Michael ;
Brentani, Helena ;
Burton, Christie L. ;
Camarena, Beatriz ;
Cappi, Carolina ;
Cath, Danielle ;
Cavallini, Maria ;
Conti, David ;
Cook, Edwin ;
Coric, Vladimir ;
Cullen, Bernadette A. ;
Cusi, Danielle ;
Davis, Lea K. ;
Delorme, Richard ;
Denys, Damiaan ;
Derks, Eske ;
Eapen, Valsamma ;
Edlund, Christopher ;
Erdman, Lauren ;
Falkai, Peter ;
Figee, Martijn ;
Fyer, Abigail J. ;
Geller, Daniel A. ;
Goes, Fernando S. ;
Grabe, Hans ;
Grados, Marcos A. ;
Greenberg, Benjamin D. ;
Grunblatt, Edna ;
Guo, Wei ;
Hanna, Gregory L. ;
Hemmings, Sian ;
Hounie, Ana G. ;
Jenicke, Michael ;
Keenan, Clare ;
Kennedy, James ;
Khramtsova, Ekaterina A. ;
Konkashbaev, Anuar ;
Knowles, James A. ;
Krasnow, Janice ;
Lange, Cristophe ;
Lanzagorta, Nuria ;
Leboyer, Marion ;
Lennertz, Leonhard ;
Li, Bingbin .
MOLECULAR PSYCHIATRY, 2018, 23 (05) :1181-1188
[4]   Comparisons of Multi-Marker Association Methods to Detect Association Between a Candidate Region and Disease [J].
Ballard, David H. ;
Cho, Judy ;
Zhao, Hongyu .
GENETIC EPIDEMIOLOGY, 2010, 34 (03) :201-212
[5]   Joint Contributions of Rare Copy Number Variants and Common SNPs to Risk for Schizophrenia [J].
Bergen, Sarah E. ;
Ploner, Alexander ;
Howrigan, Daniel ;
O'Donovan, Michael C. ;
Smoller, Jordan W. ;
Sullivan, Patrick F. ;
Sebat, Jonathan ;
Neale, Benjamin ;
Kendler, Kenneth S. .
AMERICAN JOURNAL OF PSYCHIATRY, 2019, 176 (01) :29-35
[6]   THE PGC GWAS META-ANALYSIS OF ANOREXIA NERVOSA: SNP HERITABILITY, GENETIC CORRELATIONS, AND SNP RESULTS [J].
Bulik, Cynthia ;
Duncan, Laramie ;
Breen, Gerome .
EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2017, 27 :S360-S361
[7]   PRSice-2: Polygenic Risk Score software for biobank-scale data [J].
Choi, Shing Wan ;
O'Reilly, Paul F. .
GIGASCIENCE, 2019, 8 (07)
[8]  
Coombes B., 2020, DISSECTING CLIN HETE, DOI [10.1101/2020.03.31.20044800, DOI 10.1101/2020.03.31.20044800]
[9]   A linear mixed model framework for gene-based gene-environment interaction tests in twin studies [J].
Coombes, Brandon J. ;
Basu, Saonli ;
McGue, Matt .
GENETIC EPIDEMIOLOGY, 2018, 42 (07) :648-663
[10]   Population-based neuroimaging reveals traces of childbirth in the maternal brain [J].
de Lange, Ann-Marie G. ;
Kaufmann, Tobias ;
van der Meer, Dennis ;
Maglanoc, Luigi A. ;
Alnaes, Dag ;
Moberget, Torgeir ;
Douaud, Gwenaelle ;
Andreassen, Ole A. ;
Westlye, Lars T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (44) :22341-22346