Engineering MPx (M = Fe, Co or Ni) interface electron transfer channels for boosting photocatalytic H2 evolution over g-C3N4/MoS2 layered heterojunctions

被引:206
作者
Lu, Xinyong [1 ,2 ]
Xie, Jun [1 ,2 ]
Chen, Xiaobo [3 ]
Li, Xin [1 ,2 ]
机构
[1] South China Agr Univ, Minist Agr, Key Lab Energy Plants Resource & Utilizat, Coll Forestry & Landscape Architecture, Guangzhou 510642, Guangdong, Peoples R China
[2] South China Agr Univ, Coll Mat & Energy, Guangzhou 510642, Guangdong, Peoples R China
[3] Univ Missouri, Dept Chem, Kansas City, MO 64110 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Photocatalytic hydrogen evolution; Metal phosphide interface electronic bridge; Layered heterojunctions; g-C3N4; MoS(2)Cocatalysts; GRAPHITIC CARBON NITRIDE; IN-SITU SYNTHESIS; HYDROGEN-EVOLUTION; HIGH-EFFICIENCY; NANOSHEETS; COCATALYST; GRAPHENE; ELECTROCATALYST; NANOPARTICLES; NANORODS;
D O I
10.1016/j.apcatb.2019.04.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is challenging to develop highly efficient, multifunctional and low-cost cocatalysts to accelerate transfer, separation and utilization of charge carriers for fundamentally boosting photocatalytic H-2 evolution. So far, the famous metallic MPx (M = Fe, Co or Ni) H-2-evolution cocatalyst have never been used as interface electron transfer channels between semiconductors and cocatalysts. Herein, we, for the first time, demonstrated that metal phosphide (MP) cocatalyts could be used as an interface electronic bridge to greatly enhance the photocatalytic H-2 evolution over 2D/2D g-C3N4/MoS2 layered heterojunctions. The results clearly prove that Ni2P could serve as much better interface electron transfer channel than CoP and Fe2P. The highest hydrogen production rate of ternary g-C3N4-1%Ni2P-1.5%MoS2 could reach 532.41 mu molg(-1)h(-1), which was 2.47 and 5.15 times than those of g-C3N4-1.5%MoS2 and g-C3N4-1%Ni2P, respectively. More importantly, the bi-functional roles of MP cocatalyts in boosting photocatalytic H-2 evolution were also carefully revealed. Apparently, the metallic MP cocatalyts could not only serve as normal cocatalysts to boost the H-2-evolution kinetics through decreasing the overpotential, but also can act as excellent interface electron transfer channels to achieve efficient transfer of more electrons from g-C3N4 to the surface active sites of MoS2, thus synergistically leading to the significantly boosted H-2 evolution. This work would open up opportunities to develop high-efficiency and low-cost photocatalytic system using the rationally designed metallic earth-abundant cocatalysts as the interface electron bridge.
引用
收藏
页码:250 / 259
页数:10
相关论文
共 63 条
[1]   Efficient visible-light photocatalytic H2 evolution over metal-free g-C3N4 co-modified with robust acetylene black and Ni(OH)2 as dual co-catalysts [J].
Bi, Guican ;
Wen, Jiuqing ;
Li, Xin ;
Liu, Wei ;
Xie, Jun ;
Fang, Yueping ;
Zhang, Weiwei .
RSC ADVANCES, 2016, 6 (37) :31497-31506
[2]   Vacancy-Induced Ferromagnetism of MoS2 Nanosheets [J].
Cai, Liang ;
He, Jingfu ;
Liu, Qinghua ;
Yao, Tao ;
Chen, Lin ;
Yan, Wensheng ;
Hu, Fengchun ;
Jiang, Yong ;
Zhao, Yidong ;
Hu, Tiandou ;
Sun, Zhihu ;
Wei, Shiqiang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (07) :2622-2627
[3]   Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J].
Cao, Shaowen ;
Low, Jingxiang ;
Yu, Jiaguo ;
Jaroniec, Mietek .
ADVANCED MATERIALS, 2015, 27 (13) :2150-2176
[4]   Facile synthesis and enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts [J].
Chen, Feng ;
Yang, Hui ;
Wang, Xuefei ;
Yu, Huogen .
CHINESE JOURNAL OF CATALYSIS, 2017, 38 (02) :296-304
[5]   CdS-Based photocatalysts [J].
Cheng, Lei ;
Xiang, Quanjun ;
Liao, Yulong ;
Zhang, Huaiwu .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1362-1391
[6]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[7]   In-situ synthesis of Ni2P co-catalyst decorated Zn0.5Cd0.5S nanorods for high quantum-yield photocatalytic hydrogen production under visible light irradiation [J].
Dai, Dongsheng ;
Wang, Lu ;
Xiao, Nan ;
Li, Songsong ;
Xu, Hao ;
Liu, Shuang ;
Xu, Boran ;
Lv, Da ;
Gao, Yangqing ;
Song, Weiyu ;
Ge, Lei ;
Liu, Jian .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 233 :194-201
[8]   In-situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation [J].
Dai, Dongsheng ;
Xu, Hao ;
Ge, Lei ;
Han, Changcun ;
Gao, Yangqin ;
Li, Songsong ;
Lu, Yan .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 217 :429-436
[9]   Enhanced photocatalytic H2 production on CdS nanorod using cobalt-phosphate as oxidation cocatalyst [J].
Di, Tingmin ;
Zhu, Bicheng ;
Zhang, Jun ;
Cheng, Bei ;
Yu, Jiaguo .
APPLIED SURFACE SCIENCE, 2016, 389 :775-782
[10]   Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution [J].
Feng, Ligang ;
Vrubel, Heron ;
Bensimon, Michael ;
Hu, Xile .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (13) :5917-5921