An integro-differential equation model for alignment and orientational aggregation

被引:24
作者
Kang, Kyungkeun [1 ,2 ]
Perthame, Benoit [3 ]
Stevens, Angela [4 ]
Velazquez, J. J. L. [5 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
[2] Inst Basic Sci, Suwon 440746, South Korea
[3] Ecole Normale Super, CNRS, Dept Math Appl, UMR 8553, F-75230 Paris, France
[4] Univ Heidelberg, INF 267, BQ 0021, D-69120 Heidelberg, Germany
[5] Univ Complutense, Fac Ciencias Matemat, Inst Ciencias Matemat CSIC UAM UC3M, E-28040 Madrid, Spain
关键词
Aggregation; Alignment; Integro-differential equation; COMMON DIRECTION; F-ACTIN; CELLS; ORDER;
D O I
10.1016/j.jde.2008.11.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an integro-differential equation modeling angular alignment of interacting bundles of cells or filaments. A bifurcation analysis of the related stationary problem was done by Ceigant and Stoll in [E. Ceigant, M. Stoll, Bifurcation analysis of an orientational aggregation model, J. Math. Biol. 46 (6) (2003) 537-563]. Here we analyze the time-dependent problem and prove that the type of alignment (one- or multi-directional) depends on the initial distribution, the interaction potential, and the preferred optimal orientation of the bundles of cells or filaments. Our main technical tool is the analysis of the evolution of suitable functionals for the cell density, which allows to also specify the direction(s) where the final alignment takes place. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1387 / 1421
页数:35
相关论文
共 10 条
[1]  
CIVELEKOGLU G, 1994, B MATH BIOL, V56, P587
[2]  
DWORKING M, 1993, MYXOBACTERIA, V2
[3]   Bifurcation analysis of an orientational aggregation model [J].
Geigant, E ;
Stoll, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 46 (06) :537-563
[4]   An integrodifferential model for orientational distributions of F-actin in cells [J].
Geigant, E ;
Ladizhansky, K ;
Mogilner, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (03) :787-809
[5]  
GEIGANT E, 2000, EQUADIFF 99, V2, P1210
[6]  
GEIGANT E, 1999, THESIS BONN U BONNER, V323
[7]  
Mogilner A, 1996, J MATH BIOL, V34, P811, DOI 10.1007/BF01834821
[8]   Spatio-angular order in populations of self-aligning objects: Formation of oriented patches [J].
Mogilner, A ;
EdelsteinKeshet, L .
PHYSICA D, 1996, 89 (3-4) :346-367
[9]   SELECTING A COMMON DIRECTION .1. HOW ORIENTATIONAL ORDER CAN ARISE FROM SIMPLE CONTACT RESPONSES BETWEEN INTERACTING CELLS [J].
MOGILNER, A ;
EDELSTEINKESHET, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 1995, 33 (06) :619-660
[10]   MODELS OF DISPERSAL IN BIOLOGICAL-SYSTEMS [J].
OTHMER, HG ;
DUNBAR, SR ;
ALT, W .
JOURNAL OF MATHEMATICAL BIOLOGY, 1988, 26 (03) :263-298