Electrochemical micromachining of passive electrodes

被引:19
作者
Sueptitz, R. [1 ]
Dunne, P. [1 ]
Tschulik, K. [1 ]
Uhlemann, M. [1 ]
Eckert, J. [1 ]
Gebert, A. [1 ]
机构
[1] Leibniz Inst Solid State & Mat Res IFW Dresden, D-01069 Dresden, Germany
关键词
Electrochemical micromachining; Numerical simulation; Passive electrode; Stainless steel; ULTRASHORT VOLTAGE PULSES; TRANSPASSIVE DISSOLUTION MECHANISM; BULK METALLIC-GLASS; STAINLESS-STEELS; SEMICONDUCTING PROPERTIES; SULFURIC-ACID; SURFACES; ALLOYS; FILMS;
D O I
10.1016/j.electacta.2013.07.139
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electronic model describing the electrochemical micromachining (ECMM) of passive electrodes utilizing the transpassive dissolution is discussed. Numerical simulations are performed on a machining model circuit using measured electrochemical properties of the model system which consisted of a tungsten tool electrode, a 1 M H2SO4 electrolyte and a stainless steel work piece electrode. The results of these simulations were verified by performing machining experiments applying the same model system. For a passive stainless steel electrode it is shown that it can be treated like an actively dissolving electrode with high reaction overpotential. The efficiency of the machining process can be enhanced by polarizing the steel work piece electrode close to the transpassive potential region. Three different ways of achieving this polarization are discussed: by polarizing the work piece electrode only, by polarizing both electrodes and by adding oxidizing species to the electrolyte solution. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:562 / 569
页数:8
相关论文
共 30 条
[21]   Electrochemical Micromachining of NiTi Shape Memory Alloys with Ultrashort Voltage Pulses [J].
Maurer, Joseph J. ;
Hudson, John L. ;
Fick, Steven E. ;
Moffat, Thomas P. ;
Shaw, Gordon A. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2012, 15 (02) :D8-D10
[22]   Electrochemical micromachining of Hastelloy B-2 with ultrashort voltage pulses [J].
Maurer, Joseph J. ;
Mallett, Jonathan J. ;
Hudson, John L. ;
Fick, Steven E. ;
Moffat, Thomas P. ;
Shaw, Gordon A. .
ELECTROCHIMICA ACTA, 2010, 55 (03) :952-958
[23]   The effects of tool electrode size on characteristics of micro electrochemical machining [J].
Park, B. J. ;
Kim, B. H. ;
Chu, C. N. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2006, 55 (01) :197-200
[24]  
Pourbaix M., 1966, ATLAS ELECTROCHEMICA
[25]   Thermoplastic forming of bulk metallic glass - Applications for MEMS and microstructure fabrication [J].
Schroers, Jan ;
Nguyen, Tranquoc ;
O'Keeffe, Sean ;
Desai, Amish .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 449 :898-902
[26]   Electrochemical micromachining [J].
Schuster, R ;
Kirchner, V ;
Allongue, P ;
Ertl, G .
SCIENCE, 2000, 289 (5476) :98-101
[27]   Electrochemical microstructuring with short voltage pulses [J].
Schuster, Rolf .
CHEMPHYSCHEM, 2007, 8 (01) :34-39
[28]   Analysis of the side gap resulting from micro electrochemical machining with a tungsten wire and ultrashort voltage pulses [J].
Shin, Hong Shik ;
Kim, Bo Hyun ;
Chu, Chong Nam .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (07)
[29]   Micropatterning of titanium surfaces using electrochemical micromachining with an ethylene glycol electrolyte [J].
Sjoestroem, Terje ;
Su, Bo .
MATERIALS LETTERS, 2011, 65 (23-24) :3489-3492
[30]   Micropatterning of Fe-based bulk metallic glass surfaces by pulsed electrochemical micromachining [J].
Sueptitz, Ralph ;
Tschulik, Kristina ;
Becker, Christian ;
Stoica, Mihai ;
Uhlemann, Margitta ;
Eckert, Juergen ;
Gebert, Annett .
JOURNAL OF MATERIALS RESEARCH, 2012, 27 (23) :3033-3040