Electrochemical micromachining of passive electrodes

被引:19
|
作者
Sueptitz, R. [1 ]
Dunne, P. [1 ]
Tschulik, K. [1 ]
Uhlemann, M. [1 ]
Eckert, J. [1 ]
Gebert, A. [1 ]
机构
[1] Leibniz Inst Solid State & Mat Res IFW Dresden, D-01069 Dresden, Germany
关键词
Electrochemical micromachining; Numerical simulation; Passive electrode; Stainless steel; ULTRASHORT VOLTAGE PULSES; TRANSPASSIVE DISSOLUTION MECHANISM; BULK METALLIC-GLASS; STAINLESS-STEELS; SEMICONDUCTING PROPERTIES; SULFURIC-ACID; SURFACES; ALLOYS; FILMS;
D O I
10.1016/j.electacta.2013.07.139
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electronic model describing the electrochemical micromachining (ECMM) of passive electrodes utilizing the transpassive dissolution is discussed. Numerical simulations are performed on a machining model circuit using measured electrochemical properties of the model system which consisted of a tungsten tool electrode, a 1 M H2SO4 electrolyte and a stainless steel work piece electrode. The results of these simulations were verified by performing machining experiments applying the same model system. For a passive stainless steel electrode it is shown that it can be treated like an actively dissolving electrode with high reaction overpotential. The efficiency of the machining process can be enhanced by polarizing the steel work piece electrode close to the transpassive potential region. Three different ways of achieving this polarization are discussed: by polarizing the work piece electrode only, by polarizing both electrodes and by adding oxidizing species to the electrolyte solution. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:562 / 569
页数:8
相关论文
共 50 条
  • [1] Electrochemical micromachining of passive electrodes - Application to bulk metallic glasses
    Sueptitz, R.
    Horn, S.
    Stoica, M.
    Uhlemann, M.
    Gebert, A.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2015, 219 : 193 - 198
  • [2] Experimental investigation on suitability of electrolytes for electrochemical micromachining of titanium
    Anasane, Sandip S.
    Bhattacharyya, B.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 86 (5-8): : 2147 - 2160
  • [3] Modeling of wire electrochemical micromachining
    Volgin, V. M.
    Lyubimov, V. V.
    Kukhar, V. D.
    Davydov, A. D.
    CIRPE 2015 - UNDERSTANDING THE LIFE CYCLE IMPLICATIONS OF MANUFACTURING, 2015, 37 : 176 - 181
  • [4] Electrochemical micromachining on titanium using the NaCl-containing ethylene glycol electrolyte
    Liu, Weidong
    Zhang, Hui
    Luo, Zhen
    Zhao, Chunfeng
    Ao, Sansan
    Gao, Feng
    Sun, Yubo
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 255 : 784 - 794
  • [5] THE PULSE ELECTROCHEMICAL MICROMACHINING (PECMM)
    Burkert, St.
    Schulze, H. -P.
    Gmelin, Th.
    Leone, M.
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2009, 2 : 645 - 648
  • [6] Distance effects in electrochemical micromachining
    Xu, Lizhong
    Pan, Yue
    Zhao, Chuanjun
    SCIENTIFIC REPORTS, 2016, 6
  • [7] Design of an electrochemical micromachining machine
    Spieser, Alexandre
    Ivanov, Atanas
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2015, 78 (5-8): : 737 - 752
  • [8] Development of microelectrodes for electrochemical micromachining
    Yong Liu
    Di Zhu
    Yongbin Zeng
    Hongbing Yu
    The International Journal of Advanced Manufacturing Technology, 2011, 55 : 195 - 203
  • [9] Effect of Current Efficiency on Electrochemical Micromachining by Moving Electrode
    Volgin, V. M.
    Lyubimov, V. V.
    Gnidina, I. V.
    Davydov, A. D.
    Kabanova, T. B.
    5TH CIRP GLOBAL WEB CONFERENCE - RESEARCH AND INNOVATION FOR FUTURE PRODUCTION (CIRPE 2016), 2016, 55 : 65 - 70
  • [10] Development of microelectrodes for electrochemical micromachining
    Liu, Yong
    Zhu, Di
    Zeng, Yongbin
    Yu, Hongbing
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2011, 55 (1-4): : 195 - 203