Injectable, porous, and cell-responsive gelatin cryogels

被引:274
作者
Koshy, Sandeep T. [1 ,2 ,3 ]
Ferrante, Thomas C. [2 ]
Lewin, Sarah A. [2 ]
Mooney, David J. [1 ,2 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[3] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Injectable; Gelatin; Cryogel; Degradable; Matrix metalloproteinase; METHACRYLATE; DELIVERY; HYDROGELS; CSF;
D O I
10.1016/j.biomaterials.2013.11.044
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The performance of biomaterials-based therapies can be hindered by complications associated with surgical implant, motivating the development of materials systems that allow minimally invasive introduction into the host. In this study, we created cell-adhesive and degradable gelatin scaffolds that could be injected through a conventional needle while maintaining a predefined geometry and architecture. These scaffolds supported attachment, proliferation, and survival of cells in vitro and could be degraded by recombinant matrix metalloproteinase-2 and -9. Prefabricated gelatin cryogels rapidly resumed their original shape when injected subcutaneously into mice and elicited only a minor host response following injection. Controlled release of granulocyte-macrophage colony-stimulating factor from gelatin cryogels resulted in complete infiltration of the scaffold by immune cells and promoted matrix metalloproteinase production leading to cell-mediated degradation of the cryogel matrix. These findings suggest that gelatin cryogels could serve as a cell-responsive platform for biomaterial-based therapy. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2477 / 2487
页数:11
相关论文
共 31 条
[1]  
Ali OA, 2009, NAT MATER, V8, P151, DOI [10.1038/NMAT2357, 10.1038/nmat2357]
[2]   Directed 3D cell alignment and elongation in microengineered hydrogels [J].
Aubin, Hug ;
Nichol, Jason W. ;
Hutson, Che B. ;
Bae, Hojae ;
Sieminski, Alisha L. ;
Cropek, Donald M. ;
Akhyari, Payam ;
Khademhosseini, Ali .
BIOMATERIALS, 2010, 31 (27) :6941-6951
[3]   Host response to tissue engineered devices [J].
Babensee, JE ;
Anderson, JM ;
McIntire, LV ;
Mikos, AG .
ADVANCED DRUG DELIVERY REVIEWS, 1998, 33 (1-2) :111-139
[4]   Injectable biodegradable hydrogels: progress and challenges [J].
Bae, Ki Hyun ;
Wang, Li-Shan ;
Kurisawa, Motoichi .
JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (40) :5371-5388
[5]   Injectable preformed scaffolds with shape-memory properties [J].
Bencherif, Sidi A. ;
Sands, R. Warren ;
Bhatta, Deen ;
Arany, Praveen ;
Verbeke, Catia S. ;
Edwards, David A. ;
Mooney, David J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (48) :19590-19595
[6]  
Benton JA, 2009, TISSUE ENG PT A, V15, P3221, DOI [10.1089/ten.tea.2008.0545, 10.1089/ten.TEA.2008.0545]
[7]   Functional Human Vascular Network Generated in Photocrosslinkable Gelatin Methacrylate Hydrogels [J].
Chen, Ying-Chieh ;
Lin, Ruei-Zeng ;
Qi, Hao ;
Yang, Yunzhi ;
Bae, Hojae ;
Melero-Martin, Juan M. ;
Khademhosseini, Ali .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (10) :2027-2039
[8]   GM-CSF-based cancer vaccines [J].
Dranoff, G .
IMMUNOLOGICAL REVIEWS, 2002, 188 :147-154
[9]   Injectable cartilage tissue engineering [J].
Elisseeff, J .
EXPERT OPINION ON BIOLOGICAL THERAPY, 2004, 4 (12) :1849-1859
[10]   Cryogels for biomedical applications [J].
Henderson, Timothy M. A. ;
Ladewig, Katharina ;
Haylock, David N. ;
McLean, Keith M. ;
O'Connor, Andrea J. .
JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (21) :2682-2695