Epiviz: a view inside the design of an integrated visual analysis software for genomics

被引:3
作者
Chelaru, Florin [1 ,2 ]
Bravo, Hector Corrada [1 ,2 ]
机构
[1] Univ Maryland, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
来源
BMC BIOINFORMATICS | 2015年 / 16卷
基金
美国国家卫生研究院;
关键词
DIFFERENTIAL EXPRESSION ANALYSIS; RNA-SEQ EXPERIMENTS; BROWSER DATABASE; BIOCONDUCTOR; ANALYTICS; GENE;
D O I
10.1186/1471-2105-16-S11-S4
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Computational and visual data analysis for genomics has traditionally involved a combination of tools and resources, of which the most ubiquitous consist of genome browsers, focused mainly on integrative visualization of large numbers of big datasets, and computational environments, focused on data modeling of a small number of moderately sized datasets. Workflows that involve the integration and exploration of multiple heterogeneous data sources, small and large, public and user specific have been poorly addressed by these tools. In our previous work, we introduced Epiviz, which bridges the gap between the two types of tools, simplifying these workflows. Results: In this paper we expand on the design decisions behind Epiviz, and introduce a series of new advanced features that further support the type of interactive exploratory workflow we have targeted. We discuss three ways in which Epiviz advances the field of genomic data analysis: 1) it brings code to interactive visualizations at various different levels; 2) takes the first steps in the direction of collaborative data analysis by incorporating user plugins from source control providers, as well as by allowing analysis states to be shared among the scientific community; 3) combines established analysis features that have never before been available simultaneously in a genome browser. In our discussion section, we present security implications of the current design, as well as a series of limitations and future research steps. Conclusions: Since many of the design choices of Epiviz are novel in genomics data analysis, this paper serves both as a document of our own approaches with lessons learned, as well as a start point for future efforts in the same direction for the genomics community.
引用
收藏
页数:14
相关论文
共 36 条
  • [11] The UCSC Genome Browser database: update 2011
    Fujita, Pauline A.
    Rhead, Brooke
    Zweig, Ann S.
    Hinrichs, Angie S.
    Karolchik, Donna
    Cline, Melissa S.
    Goldman, Mary
    Barber, Galt P.
    Clawson, Hiram
    Coelho, Antonio
    Diekhans, Mark
    Dreszer, Timothy R.
    Giardine, Belinda M.
    Harte, Rachel A.
    Hillman-Jackson, Jennifer
    Hsu, Fan
    Kirkup, Vanessa
    Kuhn, Robert M.
    Learned, Katrina
    Li, Chin H.
    Meyer, Laurence R.
    Pohl, Andy
    Raney, Brian J.
    Rosenbloom, Kate R.
    Smith, Kayla E.
    Haussler, David
    Kent, W. James
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 : D876 - D882
  • [12] Hansen KD, 2012, GENOME BIOL, V13, DOI [10.1186/gb-2012-13-10-r83, 10.1186/gb-2012-13-10-R83]
  • [13] Increased methylation variation in epigenetic domains across cancer types
    Hansen, Kasper Daniel
    Timp, Winston
    Bravo, Hector Corrada
    Sabunciyan, Sarven
    Langmead, Benjamin
    McDonald, Oliver G.
    Wen, Bo
    Wu, Hao
    Liu, Yun
    Diep, Dinh
    Briem, Eirikur
    Zhang, Kun
    Irizarry, Rafael A.
    Feinberg, Andrew P.
    [J]. NATURE GENETICS, 2011, 43 (08) : 768 - U77
  • [14] Harger JR, 2012, P SPIE IS T ELECT IM, V8294, P389
  • [15] Design considerations for collaborative visual analytics
    Heer, Jeffrey
    Agrawala, Maneesh
    [J]. VAST: IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2007, PROCEEDINGS, 2007, : 171 - 178
  • [16] Ensembl 2009
    Hubbard, T. J. P.
    Aken, B. L.
    Ayling, S.
    Ballester, B.
    Beal, K.
    Bragin, E.
    Brent, S.
    Chen, Y.
    Clapham, P.
    Clarke, L.
    Coates, G.
    Fairley, S.
    Fitzgerald, S.
    Fernandez-Banet, J.
    Gordon, L.
    Graf, S.
    Haider, S.
    Hammond, M.
    Holland, R.
    Howe, K.
    Jenkinson, A.
    Johnson, N.
    Kahari, A.
    Keefe, D.
    Keenan, S.
    Kinsella, R.
    Kokocinski, F.
    Kulesha, E.
    Lawson, D.
    Longden, I.
    Megy, K.
    Meidl, P.
    Overduin, B.
    Parker, A.
    Pritchard, B.
    Rios, D.
    Schuster, M.
    Slater, G.
    Smedley, D.
    Spooner, W.
    Spudich, G.
    Trevanion, S.
    Vilella, A.
    Vogel, J.
    White, S.
    Wilder, S.
    Zadissa, A.
    Birney, E.
    Cunningham, F.
    Curwen, V.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : D690 - D697
  • [17] The UCSC Genome Browser Database: 2008 update
    Karolchik, D.
    Kuhn, R. M.
    Baertsch, R.
    Barber, G. P.
    Clawson, H.
    Diekhans, M.
    Giardine, B.
    Harte, R. A.
    Hinrichs, A. S.
    Hsu, F.
    Kober, K. M.
    Miller, W.
    Pedersen, J. S.
    Pohl, A.
    Raney, B. J.
    Rhead, B.
    Rosenbloom, K. R.
    Smith, K. E.
    Stanke, M.
    Thakkapallayil, A.
    Trumbower, H.
    Wang, T.
    Zweig, A. S.
    Haussler, D.
    Kent, W. J.
    [J]. NUCLEIC ACIDS RESEARCH, 2008, 36 : D773 - D779
  • [18] The UCSC Genome Browser Database
    Karolchik, D
    Baertsch, R
    Diekhans, M
    Furey, TS
    Hinrichs, A
    Lu, YT
    Roskin, KM
    Schwartz, M
    Sugnet, CW
    Thomas, DJ
    Weber, RJ
    Haussler, D
    Kent, WJ
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (01) : 51 - 54
  • [19] The human genome browser at UCSC
    Kent, WJ
    Sugnet, CW
    Furey, TS
    Roskin, KM
    Pringle, TH
    Zahler, AM
    Haussler, D
    [J]. GENOME RESEARCH, 2002, 12 (06) : 996 - 1006
  • [20] Ensembl BioMarts: a hub for data retrieval across taxonomic space
    Kinsella, Rhoda J.
    Kaehaeri, Andreas
    Haider, Syed
    Zamora, Jorge
    Proctor, Glenn
    Spudich, Giulietta
    Almeida-King, Jeff
    Staines, Daniel
    Derwent, Paul
    Kerhornou, Arnaud
    Kersey, Paul
    Flicek, Paul
    [J]. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2011,