ULTRA-CONTRACTIVITY FOR KELLER-SEGEL MODEL WITH DIFFUSION EXPONENT m > 1-2/d

被引:21
作者
Bian, Shen [1 ,2 ]
Liu, Jian-Guo [3 ,4 ]
Zou, Chen [3 ,4 ,5 ]
机构
[1] Ocean Univ China, Dept Math, Qingdao 266003, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] Duke Univ, Dept Phys, Durham, NC 27708 USA
[4] Duke Univ, Dept Math, Durham, NC 27708 USA
[5] Peking Univ, Dept Math Sci, Beijing 100871, Peoples R China
关键词
Hyper-contractive; ultra-contractive; chemotaxis; nonlocal aggregation; degenerate diffusion; GLOBAL EXISTENCE; BLOW-UP; TIME AGGREGATION;
D O I
10.3934/krm.2014.7.9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes the hyper-contractivity in L-infinity(R-d) (it's known as ultra-contractivity) for the multi-dimensional Keller-Segel systems with the diffusion exponent m > 1-2/d. The results show that for the super-critical and critical case 1-2/d < m <= 2-2/d, if vertical bar vertical bar U-0 vertical bar vertical bar(d)((2-m))(/2) < C-d,C-m where C-d,C-m is a universal constant, then for any t > 0, vertical bar vertical bar u(.,t)vertical bar vertical bar(L)infinity (R-d) is bounded and decays as t goes to infinity. For the subcritical case m > 2-2/d, the solution u(.,t) is an element of L-infinity (R-d) with any initial data U-0 is an element of L-+(1)(R-d) for any positive time.
引用
收藏
页码:9 / 28
页数:20
相关论文
共 20 条
  • [1] Alikakos Nicholas D., 1979, Comm. Partial Differential Equations, V4, P827, DOI DOI 10.1080/03605307908820113
  • [2] [Anonymous], 2006, OXFORD LECT SERIES M
  • [3] [Anonymous], 2007, POROUS MEDIUM EQUATI
  • [4] Bedrossian J, 2011, COMMUN MATH SCI, V9, P1143
  • [5] Dynamic and Steady States for Multi-Dimensional Keller-Segel Model with Diffusion Exponent m &gt; 0
    Bian, Shen
    Liu, Jian-Guo
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 323 (03) : 1017 - 1070
  • [6] Blanchet A, 2008, COMMUN PUR APPL MATH, V61, P1449, DOI 10.1002/cpa.20225
  • [7] Blanchet A, 2006, ELECTRON J DIFFER EQ
  • [8] Diffusion, attraction and collapse
    Brenner, MP
    Constantin, P
    Kadanoff, LP
    Schenkel, A
    Venkataramani, SC
    [J]. NONLINEARITY, 1999, 12 (04) : 1071 - 1098
  • [9] Blow-up, Concentration Phenomenon and Global Existence for the Keller-Segel Model in High Dimension
    Calvez, Vincent
    Corrias, Lucilla
    Ebde, Mohamed Abderrahman
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) : 561 - 584
  • [10] Hardy-Littlewood-Sobolev inequalities via fast diffusion flows
    Carlen, Eric A.
    Carrillo, Jose A.
    Loss, Michael
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (46) : 19696 - 19701