Enhanced Performance of Micro-Electro-Mechanical-Systems (MEMS) Microbial Fuel Cells Using Electrospun Microfibrous Anode and Optimizing Operation

被引:34
作者
Fraiwan, A. [1 ]
Sundermier, S. [1 ]
Han, D. [2 ]
Steckl, A. J. [2 ]
Hassett, D. J. [3 ]
Choi, S. [1 ]
机构
[1] SUNY Binghamton, Dept Elect & Comp Engn, Bioelect & Microsyst Lab, Binghamton, NY 13902 USA
[2] Univ Cincinnati, Nanoelect Lab, Sch Elect & Comp Syst, Cincinnati, OH 45221 USA
[3] Univ Cincinnati, Coll Med, Dept Mol Genet Biochem & Microbiol, Cincinnati, OH 45267 USA
关键词
Air Bubbles; Electrospining; Flow Rate; MEMS Microbial Fuel Cell (MFC); Microchamber; Poly(E-Caprolactone) (PCL) Fiber; Shewanella Oneidensis MR-1; DENSITY;
D O I
10.1002/fuce.201200225
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, a microfabricated anode based on gold coated poly(E-caprolactone) fiber was developed that outperformed gold microelectrode by a factor of 2.65-fold and even carbon paper by 1.39-fold. This is a result of its ability to three-dimensionally interface with bacterial biofilm, the metabolic engines of the microbial fuel cell (MFC). We also examined unavoidable issues as the MFC is significantly reduced in size (e.g. to the microscale); (1) bubble production or movement into the microchamber and (2) high sensitivity to flow rate variations. In fact, intentionally induced bubble generation in the anodic chamber reduced the MFC current density by 33% and the MFC required 4 days to recover its initial performance. Under different flow rates in the anode chamber, the current densities were almost constant, however, the current increased up to 38% with increasing flow rate in the cathode.
引用
收藏
页码:336 / 341
页数:6
相关论文
共 20 条
[1]   Cartilage Tissue Engineering Using Electrospun PCL Nanofiber Meshes and MSCs [J].
Alves da Silva, M. L. ;
Martins, A. ;
Costa-Pinto, A. R. ;
Costa, P. ;
Faria, S. ;
Gomes, M. ;
Reis, R. L. ;
Neves, N. M. .
BIOMACROMOLECULES, 2010, 11 (12) :3228-3236
[2]  
Choi S., 2012, SENS ACTUAT A, DOI 10.1016/j. sna. 2012. 07. 015
[3]  
Choi S, 2011, LAB CHIP, V11, P1110, DOI [10.1039/c0lc00494d, 10.1039/c01c00494d]
[4]  
Fitzgerald L., 2012, BIOSENS BIOELECTRON, DOI 10. 1016/j. bios. 2012. 06. 039
[5]   Superhydrophobic and Oleophobic Fibers by Coaxial Electrospinning [J].
Han, Daewoo ;
Steckl, Andrew J. .
LANGMUIR, 2009, 25 (16) :9454-9462
[6]   Structural optimization of contact electrodes in microbial fuel cells for current density enhancements [J].
Inoue, Shogo ;
Parra, Erika A. ;
Higa, Adrienne ;
Jiang, Yingqi ;
Wang, Pengbo ;
Buie, Cullen R. ;
Coates, John D. ;
Lin, Liwei .
SENSORS AND ACTUATORS A-PHYSICAL, 2012, 177 :30-36
[7]   A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciense [J].
Kim, HJ ;
Park, HS ;
Hyun, MS ;
Chang, IS ;
Kim, M ;
Kim, BH .
ENZYME AND MICROBIAL TECHNOLOGY, 2002, 30 (02) :145-152
[8]   Characterization of a microbial fuel cell with reticulated carbon foam electrodes [J].
Lepage, Guillaume ;
Albernaz, Fabio Ovenhausen ;
Perrier, Gerard ;
Merlin, Gerard .
BIORESOURCE TECHNOLOGY, 2012, 124 :199-207
[9]   Electricity-producing bacterial communities in microbial fuel cells [J].
Logan, Bruce E. ;
Regan, John M. .
TRENDS IN MICROBIOLOGY, 2006, 14 (12) :512-518
[10]   Scaling up microbial fuel cells and other bioelectrochemical systems [J].
Logan, Bruce E. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (06) :1665-1671