Stage reduction on P-stable Numerov type methods of eighth order

被引:11
作者
Tsitouras, C [1 ]
机构
[1] TEI Chalkis, Dept Appl Sci, GR-34400 Psahna, Greece
关键词
initial value problem; second order; oscillatory solutions;
D O I
10.1016/j.cam.2005.06.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an implicit hybrid two step method for the solution of second order initial value problem. It costs only six function evaluations per step and attains eighth algebraic order. The method satisfy the P-stability property requiring one stage less. We conclude dealing with implementation issues for the methods of this type and give some first pleasant results from numerical tests. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:297 / 305
页数:9
相关论文
共 29 条
[1]   A generator of high-order embedded P-stable methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Simos, TE .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 72 (02) :345-358
[2]   New P-stable exponentially-fitted methods for the numerical solution of the Schrodinger equation [J].
Avdelas, G ;
Kefalidis, E ;
Simos, TE .
COMPUTATIONAL MATERIALS SCIENCE, 2001, 21 (03) :301-319
[3]  
Butcher J. C., 1976, BIT (Nordisk Tidskrift for Informationsbehandling), V16, P237, DOI 10.1007/BF01932265
[4]  
Butcher J.C., 1964, J. Aust. Math. Soc, V4, P179, DOI [10.1017/S1446788700023387, DOI 10.1017/S1446788700023387]
[5]   IMPLICIT RUNGE-KUTTA PROCESSES [J].
BUTCHER, JC .
MATHEMATICS OF COMPUTATION, 1964, 18 (85) :50-&
[7]   Order conditions and symmetry for two-step hybrid methods [J].
Chan, RPK ;
Leone, P ;
Tsai, A .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (12) :1519-1536
[8]   2-STEP 4TH ORDER P-STABLE METHODS FOR 2ND ORDER DIFFERENTIAL-EQUATIONS [J].
CHAWLA, MM .
BIT, 1981, 21 (02) :190-193
[9]   HIGH-ACCURACY P-STABLE METHODS FOR Y'' = F(T,Y) [J].
CHAWLA, MM ;
RAO, PS .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (02) :215-220
[10]   Order conditions for a class of two-step methods for y"=f(x,y) [J].
Coleman, JP .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (02) :197-220