Flux rope model of the 2003 October 28-30 coronal mass ejection and interplanetary coronal mass ejection

被引:36
|
作者
Krall, J
Yurchyshyn, VB
Slinker, S
Skoug, RM
Chen, J
机构
[1] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA
[2] Big Bear Solar Observ, Big Bear City, CA 92314 USA
[3] Los Alamos Natl Lab, Grp ISR I, Los Alamos, NM 87545 USA
关键词
solar-terrestrial relations; Sun : coronal mass ejections (CMEs); Sun : magnetic fields;
D O I
10.1086/500822
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A numerical model of an erupting solar flux rope is shown to reproduce both quantitative near-Sun properties of the 2003 October 28 coronal mass ejection and the timing, strength, and orientation of the fields measured in situ at 1 AU. Using a simple erupting flux rope model, we determine the best-fit parameters for this event. Our analysis shows that the orientation of the magnetic axis of the flux rope in this case rotates smoothly through approximately 50 degrees as the flux rope apex expands from the solar surface to 1 AU. Using a global magnetospheric simulation code, we further show that the resulting model solar wind properties at 1 AU produce a magnetospheric response comparable to that computed using the actual solar wind data.
引用
收藏
页码:541 / 553
页数:13
相关论文
共 50 条
  • [21] IS FLUX ROPE A NECESSARY CONDITION FOR THE PROGENITOR OF CORONAL MASS EJECTIONS?
    Ouyang, Y.
    Yang, K.
    Chen, P. F.
    ASTROPHYSICAL JOURNAL, 2015, 815 (01)
  • [22] Magnetic reconnection and mass acceleration in flare-coronal mass ejection events
    Qiu, J
    Wang, HM
    Cheng, CZ
    Gary, DE
    ASTROPHYSICAL JOURNAL, 2004, 604 (02) : 900 - 905
  • [23] CORONAL MASS EJECTION INDUCED OUTFLOWS OBSERVED WITH HINODE/EIS
    Jin, M.
    Ding, M. D.
    Chen, P. F.
    Fang, C.
    Imada, S.
    ASTROPHYSICAL JOURNAL, 2009, 702 (01) : 27 - 38
  • [24] Features and properties of coronal mass ejection/flare current sheets
    Lin, J.
    Li, J.
    Forbes, T. G.
    Ko, Y. -K.
    Raymond, J. C.
    Vourlidas, A.
    ASTROPHYSICAL JOURNAL, 2007, 658 (02) : L123 - L126
  • [25] Transequatorial filament eruption and its link to a coronal mass ejection
    Wang, JX
    Zhou, GP
    Wen, YY
    Zhang, YZ
    Wang, HN
    Deng, YY
    Zhang, J
    Harra, LK
    CHINESE JOURNAL OF ASTRONOMY AND ASTROPHYSICS, 2006, 6 (02): : 247 - 259
  • [26] Influence of the drag force on the leading edge of a coronal mass ejection
    Sudar, D.
    Vrsnak, B.
    Dumbovic, M.
    Temmer, M.
    Calogovic, J.
    ASTRONOMY & ASTROPHYSICS, 2022, 665
  • [27] The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation
    Dumbovic, Mateja
    Calogovic, Jasa
    Vrsnak, Bojan
    Temmer, Manuela
    Mays, M. Leila
    Veronig, Astrid
    Piantschitsch, Isabell
    ASTROPHYSICAL JOURNAL, 2018, 854 (02)
  • [28] THE NATURE OF SOLAR-FLARES ASSOCIATED WITH CORONAL MASS EJECTION
    HARRISON, RA
    ASTRONOMY & ASTROPHYSICS, 1995, 304 (02): : 585 - 594
  • [29] Radio tracking of a white-light coronal mass ejection from solar corona to interplanetary medium
    Reiner, MJ
    Kaiser, ML
    Plunkett, SP
    Prestage, NP
    Manning, R
    ASTROPHYSICAL JOURNAL, 2000, 529 (01) : L53 - L56
  • [30] A Sun-to-Earth Analysis of Magnetic Helicity of the 2013 March 17-18 Interplanetary Coronal Mass Ejection
    Pal, Sanchita
    Gopalswamy, Nat
    Nandy, Dibyendu
    Akiyama, Sachiko
    Yashiro, Seiji
    Makela, Pertti
    Xie, Hong
    ASTROPHYSICAL JOURNAL, 2017, 851 (02)