Solvable lattices and their groups of automorphisms

被引:2
作者
Soifer, GA [1 ]
机构
[1] Bar Ilan Univ, Dept Math, Ramat Gan, Israel
基金
以色列科学基金会;
关键词
lattice; arithmetic subgroup; automorphism;
D O I
10.1081/AGB-120027951
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to construct an "algebraic" representation of a group automorphisms Ant Gamma for any elementary solvable group Gamma. "Algebraic" means that the image of a semisimple (unipotent) automorphism, in the sense of Wang, will be a sernisimple (unipotent) matrix Theorem 1. This gives an answer on the question asking by Wang. As a corollary of this theorem, we show that for any group of automorphisms Ant F of a lattice Gamma in a solvable connected group Lie G there exist a representation rho : Aut Gamma--> GL(n)(Z), such that rho(Aut Gamma) is an arithmetic subgroup in the Zariski closure rho(Aut Gamma).
引用
收藏
页码:805 / 817
页数:13
相关论文
共 10 条
[1]   AUTOMORPHISM GROUPS OF NILPOTENT GROUPS [J].
BAUMSLAG, G .
AMERICAN JOURNAL OF MATHEMATICS, 1969, 91 (04) :1003-&
[2]  
MARGULIS GA, 1975, NONUNIFORM LATTICES, P371
[4]  
Raghunathan M.S, 1972, Discrete subgroups of Lie groups, V68
[5]  
SOIFER GA, 1978, FUNC ANAL APPL, V11, P91
[6]   RIGIDITY PROBLEM FOR LATTICES IN SOLVABLE LIE-GROUPS [J].
STARKOV, AN .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1994, 104 (03) :495-514
[7]   DISCRETE SUBGROUPS OF SOLVABLE LIE GROUPS .1. [J].
WANG, HC .
ANNALS OF MATHEMATICS, 1956, 64 (01) :1-19
[8]  
WEHRFRITZ B. A. F., 1974, J PURE APPL ALGEBRA, V4, P55, DOI DOI 10.1016/0022-4049(74)90030-9
[9]   RIGIDITY OF SOME TRANSLATIONS ON HOMOGENEOUS SPACES [J].
WITTE, D .
INVENTIONES MATHEMATICAE, 1985, 81 (01) :1-27
[10]  
[No title captured]