NONPARAMETRIC BERNSTEIN-VON MISES THEOREMS IN GAUSSIAN WHITE NOISE

被引:74
|
作者
Castillo, Ismael [1 ,2 ]
Nickl, Richard [3 ]
机构
[1] Univ Paris 06, CNRS, LPMA, F-75205 Paris 13, France
[2] Univ Paris 07, CNRS, LPMA, F-75205 Paris 13, France
[3] Univ Cambridge, Dept Pure Math & Math Stat, Stat Lab, Cambridge CB3 0WB, England
来源
ANNALS OF STATISTICS | 2013年 / 41卷 / 04期
关键词
Bayesian inference; plug-in property; efficiency; POSTERIOR DISTRIBUTIONS; DENSITY ESTIMATORS; EXPONENTIAL-FAMILIES; ASYMPTOTIC NORMALITY; CONVERGENCE-RATES; LIMIT-THEOREMS; PRIORS; CONTRACTION; FUNCTIONALS; PARAMETERS;
D O I
10.1214/13-AOS1133
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bernstein-von Mises theorems for nonparametric Bayes priors in the Gaussian white noise model are proved. It is demonstrated how such results justify Bayes methods as efficient frequentist inference procedures in a variety of concrete nonparametric problems. Particularly Bayesian credible sets are constructed that have asymptotically exact 1 - alpha frequentist coverage level and whose L-2-diameter shrinks at the minimax rate of convergence (within logarithmic factors) over Holder balls. Other applications include general classes of linear and nonlinear functionals and credible bands for auto-convolutions. The assumptions cover nonconjugate product priors defined on general orthonormal bases of L-2 satisfying weak conditions.
引用
收藏
页码:1999 / 2028
页数:30
相关论文
共 50 条
  • [1] ADAPTIVE BERNSTEIN-VON MISES THEOREMS IN GAUSSIAN WHITE NOISE
    Ray, Kolyan
    ANNALS OF STATISTICS, 2017, 45 (06): : 2511 - 2536
  • [2] On the Bernstein-von Mises phenomenon in the Gaussian white noise model
    Leahu, Haralambie
    ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 373 - 404
  • [3] BERNSTEIN-VON MISES THEOREMS FOR GAUSSIAN REGRESSION WITH INCREASING NUMBER OF REGRESSORS
    Bontemps, Dominique
    ANNALS OF STATISTICS, 2011, 39 (05): : 2557 - 2584
  • [4] ON THE BERNSTEIN-VON MISES PHENOMENON FOR NONPARAMETRIC BAYES PROCEDURES
    Castillo, Ismael
    Nickl, Richard
    ANNALS OF STATISTICS, 2014, 42 (05): : 1941 - 1969
  • [5] Bernstein-von Mises theorems for functionals of the covariance matrix
    Gao, Chao
    Zhou, Harrison H.
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 1751 - 1806
  • [6] The Bernstein-von Mises theorem for regression based on Gaussian Processes
    Burnaev, E. V.
    Zaytsev, A. A.
    Spokoiny, V. G.
    RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (05) : 954 - 956
  • [7] A semiparametric Bernstein-von Mises theorem for Gaussian process priors
    Castillo, Ismael
    PROBABILITY THEORY AND RELATED FIELDS, 2012, 152 (1-2) : 53 - 99
  • [8] A Bernstein-von Mises theorem in the nonparametric right-censoring model
    Kim, Y
    Lee, J
    ANNALS OF STATISTICS, 2004, 32 (04): : 1492 - 1512
  • [9] Bernstein-von Mises Theorems and Uncertainty Quantification for Linear Inverse Problems
    Giordano, Matteo
    Kekkonen, Hanne
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01): : 342 - 373
  • [10] THE SEMIPARAMETRIC BERNSTEIN-VON MISES THEOREM
    Bickel, P. J.
    Kleijn, B. J. K.
    ANNALS OF STATISTICS, 2012, 40 (01): : 206 - 237