Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression

被引:197
作者
Watrin, Erwan [1 ]
Schleiffer, Alexander [1 ]
Tanaka, Koichi [1 ]
Eisenhaber, Frank [1 ]
Nasmyth, Kim [1 ]
Peters, Jan-Michael [1 ]
机构
[1] Res Inst Mol Pathol, A-1030 Vienna, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1016/j.cub.2006.03.049
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Sister-chromatid cohesion depends on the cohesin complex whose association with chromatin is mediated by Scc2 and Scc4 in budding yeast. Both cohesin and Scc2 have been conserved from yeast to humans, but no Scc4 orthologs have been identified. Mutation of Scc2 orthologs causes defects in cohesion, transcription, and development, resulting in Cornelia de Lange syndrome in humans. Results: We have identified a family of tetratricopeptide repeat proteins that share weak sequence similarities with yeast Scc4. This family includes MAU-2, which is required for development of the nervous system in Caenorhabditis elegans. We show that the human member of this family is associated with Scc2, is bound to chromatin from telophase until prophase, and is required for association of cohesin with chromatin during interphase. Cells lacking Scc4 lose sister-chromatid cohesion precociously and arrest in prometaphase. Mitotic chromosomes in Scc4-depleted cells lack cohesin, even though the cohesin-protecting proteins Sgo1 and Bub1 are normally enriched at centromeres and separase does not seem to be active. Conclusion: Our data indicate that human Scc4 is required for the association of cohesin with chromatin, which is a prerequisite for the establishment of sister-chromatid cohesion and for chromosome biorientation in mitosis. The proteinaceous machinery that is required for loading of cohesin onto chromatin is therefore conserved from yeast to humans. The finding that Caenorhabditis elegans MAU-2 is an ortholog of Scc4 further supports the notion that the Scc2-Scc4 complex is required for developmental processes in metazoans.
引用
收藏
页码:863 / 874
页数:12
相关论文
共 42 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   ATP hydrolysis is required for cohesin's association with chromosomes [J].
Arumugam, P ;
Gruber, S ;
Tanaka, K ;
Haering, CH ;
Mechtler, K ;
Nasmyth, K .
CURRENT BIOLOGY, 2003, 13 (22) :1941-1953
[3]   Mau-2 acts cell-autonomously to guide axonal migrations in Caenorhabditis elegans [J].
Bénard, CY ;
Kébir, H ;
Takagi, S ;
Hekimi, S .
DEVELOPMENT, 2004, 131 (23) :5947-5958
[4]   Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins [J].
Ciosk, R ;
Shirayama, M ;
Shevchenko, A ;
Tanaka, TU ;
Toth, A ;
Shevchenko, A ;
Nasmyth, K .
MOLECULAR CELL, 2000, 5 (02) :243-254
[5]   The Coprinus cinereus adherin Rad9 functions in Mre11-dependent DNA repair, meiotic sister-chromatid cohesion, and meiotic homolog pairing [J].
Cummings, WJ ;
Merino, ST ;
Young, KG ;
Li, LB ;
Johnson, CW ;
Sierra, EA ;
Zolan, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (23) :14958-14963
[6]   Scc2 couples replication licensing to sister chromatid chromatid in Xenopus egg extracts [J].
Gillespie, PJ ;
Hirano, T .
CURRENT BIOLOGY, 2004, 14 (17) :1598-1603
[7]   Regulation of sister chromatid cohesion between chromosome arms [J].
Giménez-Abián, JF ;
Sumara, I ;
Hirota, T ;
Hauf, S ;
Gerlich, D ;
de la Torre, C ;
Ellenberg, J ;
Peters, JM .
CURRENT BIOLOGY, 2004, 14 (13) :1187-1193
[8]   A protein interaction map of Drosophila melanogaster [J].
Giot, L ;
Bader, JS ;
Brouwer, C ;
Chaudhuri, A ;
Kuang, B ;
Li, Y ;
Hao, YL ;
Ooi, CE ;
Godwin, B ;
Vitols, E ;
Vijayadamodar, G ;
Pochart, P ;
Machineni, H ;
Welsh, M ;
Kong, Y ;
Zerhusen, B ;
Malcolm, R ;
Varrone, Z ;
Collis, A ;
Minto, M ;
Burgess, S ;
McDaniel, L ;
Stimpson, E ;
Spriggs, F ;
Williams, J ;
Neurath, K ;
Ioime, N ;
Agee, M ;
Voss, E ;
Furtak, K ;
Renzulli, R ;
Aanensen, N ;
Carrolla, S ;
Bickelhaupt, E ;
Lazovatsky, Y ;
DaSilva, A ;
Zhong, J ;
Stanyon, CA ;
Finley, RL ;
White, KP ;
Braverman, M ;
Jarvie, T ;
Gold, S ;
Leach, M ;
Knight, J ;
Shimkets, RA ;
McKenna, MP ;
Chant, J ;
Rothberg, JM .
SCIENCE, 2003, 302 (5651) :1727-1736
[9]   Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2 [J].
Hauf, S ;
Roitinger, E ;
Koch, B ;
Dittrich, CM ;
Mechtler, K ;
Peters, JM .
PLOS BIOLOGY, 2005, 3 (03) :419-432
[10]   Cohesin cleavage by separase required for anaphase and cytokinesis in human cells [J].
Hauf, S ;
Waizenegger, IC ;
Peters, JM .
SCIENCE, 2001, 293 (5533) :1320-1323