Unsupervised Rapid Flood Mapping Using Sentinel-1 GRD SAR Images

被引:147
|
作者
Amitrano, Donato [1 ]
Di Martino, Gerardo [1 ]
Iodice, Antonio [1 ]
Riccio, Daniele [1 ]
Ruello, Giuseppe [1 ]
机构
[1] Univ Napoli Federico II, Dept Elect Engn & Informat Technol, I-80125 Naples, Italy
来源
关键词
Classification; co-occurrence texture; flooding; fuzzy systems; synthetic aperture radar (SAR); WATER INDEX NDWI; SEMIARID REGIONS; RESERVOIRS; SYSTEM; EXTENT;
D O I
10.1109/TGRS.2018.2797536
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a new methodology for rapid flood mapping exploiting Sentinel-1 synthetic aperture radar data. In particular, we propose the usage of ground range detected (GRD) images, i.e., preprocessed products made available by the European Space Agency, which can be quickly treated for information extraction through simple and poorly demanding algorithms. The proposed framework is based on two processing levels providing event maps with increasing resolution. The first level exploits classic co-occurrence texture measures combined with amplitude information in a fuzzy classification system avoiding the critical step of thresholding. The second level consists of a change-detection approach applied to the full resolution GRD product. The discussion is supported by several experiments demonstrating the potentiality of the proposed methodology, which is particularly oriented toward the end-user community.
引用
收藏
页码:3290 / 3299
页数:10
相关论文
共 50 条
  • [21] Backscatter Characteristics Analysis for Flood Mapping Using Multi-Temporal Sentinel-1 Images
    Huang, Minmin
    Jin, Shuanggen
    REMOTE SENSING, 2022, 14 (15)
  • [22] DC4Flood: A Deep Clustering Framework for Rapid Flood Detection Using Sentinel-1 SAR Imagery
    Shahi, Kasra Rafiezadeh
    Camero, Andres
    Eudaric, Jeremy
    Kreibich, Heidi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [23] LAND COVER MAPPING USING SENTINEL-1 SAR DATA
    Abdikan, S.
    Sanli, F. B.
    Ustuner, M.
    Calo, F.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 757 - 761
  • [24] Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data
    Suranjana B. Borah
    Thota Sivasankar
    M. N. S. Ramya
    P. L. N. Raju
    Environmental Monitoring and Assessment, 2018, 190
  • [25] Fast Mapping of Large-Scale Landslides in Sentinel-1 SAR Images Using SPAUNet
    Shi, Xianjian
    Wu, Yifei
    Guo, Qing
    Li, Ni
    Lin, Zhiyong
    Qiu, Hua
    Pan, Bin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 7992 - 8006
  • [26] Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data
    Borah, Suranjana B.
    Sivasankar, Thota
    Ramya, M. N. S.
    Raju, P. L. N.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2018, 190 (09)
  • [27] Flood Mapping Using Multi-temporal Sentinel-1 SAR Images: A Case Study—Inaouene Watershed from Northeast of Morocco
    Brahim Benzougagh
    Pierre-Louis Frison
    Sarita Gajbhiye Meshram
    Larbi Boudad
    Abdallah Dridri
    Driss Sadkaoui
    Khalid Mimich
    Khaled Mohamed Khedher
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2022, 46 : 1481 - 1490
  • [28] Rapid flood inundation mapping and impact assessment using Sentinel-1 SAR data over Ghaggar River basin of Punjab, India
    Mohit Arora
    Sashikanta Sahoo
    Chandra Mohan Bhatt
    Pradeep Kumar Litoria
    Brijendra Pateriya
    Journal of Earth System Science, 132
  • [29] Rapid flood inundation mapping and impact assessment using Sentinel-1 SAR data over Ghaggar River basin of Punjab, India
    Arora, Mohit
    Sahoo, Sashikanta
    Bhatt, Chandra Mohan
    Litoria, Pradeep Kumar
    Pateriya, Brijendra
    JOURNAL OF EARTH SYSTEM SCIENCE, 2023, 132 (04)
  • [30] Multitemporal SAR RGB Processing for Sentinel-1 GRD Products: Methodology and Applications
    Amitrano, Donato
    Guida, Raffaella
    Ruello, Giuseppe
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (05) : 1497 - 1507