Microstructure evolution in amorphous Hf-B-Si-C-N high temperature resistant coatings after annealing to 1500 °C in air

被引:14
作者
Shen, Y. [1 ]
Jiang, J. C. [1 ]
Zeman, P. [2 ,3 ]
Simova, V. [2 ,3 ]
Vlcek, J. [2 ,3 ]
Meletis, E. I. [1 ]
机构
[1] Univ Texas Arlington, Dept Mat Sci & Engn, Arlington, TX 76019 USA
[2] Univ West Bohemia, Dept Phys, Univ 8, Plzen 30614, Czech Republic
[3] Univ West Bohemia, NTIS European Ctr Excellence, Univ 8, Plzen 30614, Czech Republic
基金
美国国家科学基金会;
关键词
DIBORIDE-SILICON-CARBIDE; OXIDATION RESISTANCE; THERMAL-STABILITY; FILMS; ZIRCONIUM; CERAMICS; BEHAVIOR; HAFNIUM; HARD; SENSOR;
D O I
10.1038/s41598-019-40428-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recently, amorphous Hf-B-Si-C-N coatings found to demonstrate superior high-temperature oxidation resistance. The microstructure evolution of two coatings, Hf7B23Si22C6N40 and Hf6B21Si19C4N47, annealed to 1500 degrees C in air is investigated to understand their high oxidation resistance. The annealed coatings develop a two-layered structure comprising of the original as-deposited film followed by an oxidized layer. In both films, the oxidized layer possesses the same microstructure with HfO2 nanoparticles dispersed in an amorphous SiOx-based matrix. The bottom layer in the Hf6B21Si19 C4N47 coating remains amorphous after annealing while Hf7B23Si22C6N40 recrystallized partially showing a nanocrystalline structure of HfB2 and HfN nanoparticles separated by h-Si3N4 and h-BN boundaries. The HfB2 and HfN nanostructures form a sandwich structure with a HfB2 strip being atomically coherent to HfN skins via (111)-Hf monolayers. In spite of the different bottom layer structure, the oxidized/bottom layer interface of both films was found to exhibit a similar microstructure with a fine distribution of HfO2 nanoparticles surrounded by SiO2 quartz boundaries. The high-temperature oxidation resistance of both films is attributed to the particular evolving microstructure consisting of HfO2 nanoparticles within a dense SiOx-based matrix and quartz SiO2 in front of the oxidized/bottom layer interface acting as a barrier for oxygen and thermal diffusion.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Crystallization behavior and characterization of turbostratic boron nitride [J].
Alkoy, S ;
Toy, C ;
Gonul, T ;
Tekin, A .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1997, 17 (12) :1415-1422
[2]  
[Anonymous], 1997, PDF 2 DAT SETS, P1
[3]   Effect of the gas mixture composition on high-temperature behavior of magnetron sputtered Si-B-C-N coatings [J].
Capek, J. ;
Hreben, S. ;
Zeman, P. ;
Vlcek, J. ;
Cerstvy, R. ;
Houska, J. .
SURFACE & COATINGS TECHNOLOGY, 2008, 203 (5-7) :466-469
[4]   Oxidation Resistance of Hafnium Diboride Ceramics with Additions of Silicon Carbide and Tungsten Boride or Tungsten Carbide [J].
Carney, Carmen M. ;
Parthasarathy, Triplicane A. ;
Cinibulk, Michael K. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (08) :2600-2607
[5]   Oxidation Behavior of Zirconium Diboride Silicon Carbide Produced by the Spark Plasma Sintering Method [J].
Carney, Carmen M. ;
Mogilvesky, Pavel ;
Parthasarathy, Triplicane A. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (09) :2046-2052
[6]   Oxidation resistance of hafnium diboride-silicon carbide from 1400 to 2000 A°C [J].
Carney, Carmen M. .
JOURNAL OF MATERIALS SCIENCE, 2009, 44 (20) :5673-5681
[7]   High-strength zirconium diboride-based ceramics [J].
Chamberlain, AL ;
Fahrenholtz, WG ;
Hilmas, GE ;
Ellerby, DT .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2004, 87 (06) :1170-1172
[8]   A silicon carbide capacitive pressure sensor for in-cylinder pressure measurement [J].
Chen, Li ;
Mehregany, Mehran .
SENSORS AND ACTUATORS A-PHYSICAL, 2008, 145 (1-2) :2-8
[9]   Enthalpies of Formation of Transition Metal Diborides: A First Principles Study [J].
Colinet, Catherine ;
Tedenac, Jean-Claude .
CRYSTALS, 2015, 5 (04) :562-582
[10]   Ultra-high-temperature ceramic coatings for oxidation protection of carbon-carbon composites [J].
Corral, Erica L. ;
Loehman, Ronald E. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (05) :1495-1502