Numerical analysis of a two-parameter fractional telegraph equation

被引:34
作者
Ford, Neville J. [1 ]
Manuela Rodrigues, M. [2 ]
Xiao, Jingyu [3 ]
Yan, Yubin [1 ]
机构
[1] Univ Chester, Dept Math, Chester CH1 4BJ, Cheshire, England
[2] Univ Aveiro, Dept Math, CIDMA Ctr Res & Dev Math & Applicat, Aveiro, Portugal
[3] Harbin Inst Technol, Dept Math, Harbin 150006, Peoples R China
关键词
Fractional partial differential equation; Fractional telegraph equation; Finite difference method; Stability; Mittag-Leffler function; ADVECTION-DISPERSION EQUATIONS; BOUNDED DOMAINS;
D O I
10.1016/j.cam.2013.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the two-parameter fractional telegraph equation of the form -D-C(t0+)alpha+1 u(t, x) + D-C(t0+)beta+1 u(t, x) - D-C(t0+)alpha u(t, x) - u(t, x) = 0. Here D-C(t0+)alpha, D-C(t0+)alpha+1, D-C(t0+)beta+1 are operators of the Caputo-type fractional derivative, where 0 <= to to xo alpha < 1 and 0 <= beta < 1. A numerical method is introduced to solve this fractional telegraph equation and stability conditions for the numerical method are obtained. Numerical examples are given in the final section of the paper. 0 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 106
页数:12
相关论文
共 31 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], INT J DIFFERENTIAL E
[3]  
[Anonymous], 1905, ACTA MATH-DJURSHOLM
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]  
[Anonymous], REND FIS ACC LINCE 9
[6]   Fractional telegraph equations [J].
Cascaval, RC ;
Eckstein, EC ;
Frota, CL ;
Goldstein, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) :145-159
[7]   Analytical solution for the time-fractional telegraph equation by the method of separating variables [J].
Chen, J. ;
Liu, F. ;
Anh, V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1364-1377
[8]   Generalized compound quadrature formulae for finite-part integrals [J].
Diethelm, K .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) :479-493
[9]  
Diethelm K., 1997, ELECTRON T NUMER ANA, V5, P1
[10]   AN ASYMPTOTIC ANALYSIS OF 2 ALGORITHMS FOR CERTAIN HADAMARD FINITE-PART INTEGRALS [J].
ELLIOTT, D .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (03) :445-462