The tanh-coth method for some nonlinear pseudoparabolic equations with exact solutions

被引:44
作者
Gozukizil, Omer Faruk [1 ]
Akcagil, Samil [1 ]
机构
[1] Sakarya Univ, Dept Math, Sakarya, Turkey
关键词
nonlinear pseudoparabolic equation; Benjamin-Bona-Mahony-Peregrine-Burgers (BBMPB) equation; Oskolkov-Benjamin-Bona-Mahony-Burgers (OBBMB) equation; one-dimensional Oskolkov equation; generalised hyperelastic-rod wave equation; tanh-coth method; SOLITARY WAVE SOLUTIONS; CAMASSA-HOLM; VARIANTS; COMPACT;
D O I
10.1186/1687-1847-2013-143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We studied mostly important four nonlinear pseudoparabolic physical models: the Benjamin-Bona-Mahony-Peregrine-Burgers (BBMPB) equation, the Oskolkov-Benjamin-Bona-Mahony-Burgers (OBBMB) equation, the one-dimensional Oskolkov equation and the generalised hyperelastic-rod wave equation. By using the tanh-coth method and symbolic computation system Maple, we have obtained abundant new solutions of these equations. The exact solutions show that the tanh-coth method is a powerful mathematical tool for solving nonlinear pseudoparabolic equations.
引用
收藏
页数:18
相关论文
共 32 条
[11]   Travelling Wave Solutions to the Benney-Luke and the Higher-Order Improved Boussinesq Equations of Sobolev Type [J].
Gozukizil, Omer Faruk ;
Akcagil, Samil .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[12]   EXACT SOLITARY WAVE SOLUTIONS OF NONLINEAR EVOLUTION AND WAVE-EQUATIONS USING A DIRECT ALGEBRAIC-METHOD [J].
HEREMAN, W ;
BANERJEE, PP ;
KORPEL, A ;
ASSANTO, G ;
VANIMMERZEELE, A ;
MEERPOEL, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (05) :607-628
[13]   The classical problem of water waves: A reservoir of integrable and nearly-integrable equations [J].
Robin S Johnson .
Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 1) :72-92
[14]   Camassa-Holm, Korteweg-de Vries and related models for water waves [J].
Johnson, RS .
JOURNAL OF FLUID MECHANICS, 2002, 455 :63-82
[15]   The Cauchy problem for an equation of Sobolev type with power non-linearity [J].
Kaikina, EI ;
Naumkin, PI ;
Shishmarev, IA .
IZVESTIYA MATHEMATICS, 2005, 69 (01) :59-111
[16]  
Karch G, 1997, MATH METHOD APPL SCI, V20, P271
[17]   ON SOLITARY-WAVE INTERACTION [J].
KODAMA, Y .
PHYSICS LETTERS A, 1987, 123 (06) :276-282
[18]  
Korpusov M.O., 2008, J.Math.Sci, V148, P1, DOI DOI 10.1007/S10958-007-0541-3
[19]   FLUCTUATION SPECTRA OF A DRIFT WAVE SOLITON GAS [J].
MEISS, JD ;
HORTON, W .
PHYSICS OF FLUIDS, 1982, 25 (10) :1838-1843
[20]   SOLITON AND ANTISOLITON RESONANT INTERACTIONS [J].
MUSETTE, M ;
LAMBERT, F ;
DECUYPER, JC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (18) :6223-6235