The tanh-coth method for some nonlinear pseudoparabolic equations with exact solutions

被引:44
作者
Gozukizil, Omer Faruk [1 ]
Akcagil, Samil [1 ]
机构
[1] Sakarya Univ, Dept Math, Sakarya, Turkey
关键词
nonlinear pseudoparabolic equation; Benjamin-Bona-Mahony-Peregrine-Burgers (BBMPB) equation; Oskolkov-Benjamin-Bona-Mahony-Burgers (OBBMB) equation; one-dimensional Oskolkov equation; generalised hyperelastic-rod wave equation; tanh-coth method; SOLITARY WAVE SOLUTIONS; CAMASSA-HOLM; VARIANTS; COMPACT;
D O I
10.1186/1687-1847-2013-143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We studied mostly important four nonlinear pseudoparabolic physical models: the Benjamin-Bona-Mahony-Peregrine-Burgers (BBMPB) equation, the Oskolkov-Benjamin-Bona-Mahony-Burgers (OBBMB) equation, the one-dimensional Oskolkov equation and the generalised hyperelastic-rod wave equation. By using the tanh-coth method and symbolic computation system Maple, we have obtained abundant new solutions of these equations. The exact solutions show that the tanh-coth method is a powerful mathematical tool for solving nonlinear pseudoparabolic equations.
引用
收藏
页数:18
相关论文
共 32 条
[1]  
Amfilokhiev V.B., 1975, T LENINGR KORABLESTR, V96, P3
[2]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[3]   SOLITARY-WAVE INTERACTION [J].
BONA, JL ;
PRITCHARD, WG ;
SCOTT, LR .
PHYSICS OF FLUIDS, 1980, 23 (03) :438-441
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]  
Camassa R., 1994, Advances in Applied Mechanics, V31, P1
[6]   Global weak solutions to a generalized hyperelastic-rod wave equation [J].
Coclite, GM ;
Holden, H ;
Karlsen, KH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (04) :1044-1069
[7]  
Dubey SA, 2010, ELECTRON J DIFFER EQ, P75
[8]   On asymptotically equivalent shallow water wave equations [J].
Dullin, HR ;
Gottwald, GA ;
Holm, DD .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 190 (1-2) :1-14
[9]   NUMERICAL AND THEORETICAL-STUDY OF CERTAIN NON-LINEAR WAVE PHENOMENA [J].
FORNBERG, B ;
WHITHAM, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1361) :373-404
[10]   Exact solutions of Benjamin-Bona-Mahony-Burgers-type nonlinear pseudo-parabolic equations [J].
Gozukizil, Omer Faruk ;
Akcagil, Samil .
BOUNDARY VALUE PROBLEMS, 2012, :1-12