Advantages of CO over CO2 as reactant for electrochemical reduction to ethylene, ethanol and n-propanol on gas diffusion electrodes at high current densities

被引:63
|
作者
Cuellar, N. S. Romero [1 ,2 ,3 ]
Wiesner-Fleischer, K. [1 ]
Fleischer, M. [1 ]
Rucki, A. [1 ]
Hinrichsen, O. [2 ,3 ]
机构
[1] Siemens AG, Corp Technol, Otto Hahn Ring 6, D-81739 Munich, Germany
[2] Tech Univ Munich, Catalysis Res Ctr, Lichtenbergstr 4, D-85747 Garching, Germany
[3] Tech Univ Munich, Chem Dept, Lichtenbergstr 4, D-85747 Garching, Germany
关键词
CO electroreduction; Cu-GDE; Nano-vs; microparticles; C2 and C3 products; CARBON-DIOXIDE; AQUEOUS-SOLUTIONS; ELECTROREDUCTION; CONVERSION; INSIGHTS; CATALYST; MONOXIDE; PH; HYDROCARBONS; SELECTIVITY;
D O I
10.1016/j.electacta.2019.03.142
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical conversion of CO2 to value-added chemicals is a technology gaining broader interest as society moves towards a carbon-neutral circular economy. Nonetheless, there are still several challenges to overcome before this technology can be applied as an industrial process. In the reaction path of the electrochemical reduction of CO2 with Cu as an electrocatalyst, it is known that carbon monoxide is the key intermediate to chemicals such as ethylene, ethanol, and n-propanol. However, a better understanding of the electrochemical reduction of CO is still necessary to improve selectivity and efficiency at high current densities. In this work, the electrochemical reduction of CO2 and CO towards C2 and C3 products is investigated using gas diffusion electrodes in a flow cell. Thereby the electrochemical reaction is not limited by the solubility of the feed gas in the electrolyte, and current densities of industrial relevance can be achieved. The electrodes are prepared using commercial Cu-powders consisting either of nano- or microparticles that are deposited on gas diffusion layers. Potentiostatic experiments show that with CO as the reactant, higher current densities for C2 and C3 products can be achieved at lower working electrode potentials compared to CO2 as the reactant. Galvanostatic CO electrochemical reduction at -300 mA cm(-2 )with Cu-nanoparticles (40-60 nm) results in a cumulative Faradaic efficiency of 89% for C2 and C3 products. This represents a two-fold increase in selectivity to ethylene and a three-fold increase towards ethanol and n-propanol compared to the selectivity obtained with CO2 as the reactant. This enhancement of selectivity for C2 and C3 products at current densities of industrial relevance with CO as reactant provides a new perspective regarding a two-step electrochemical reduction of CO2. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:164 / 175
页数:12
相关论文
共 50 条
  • [31] Study of CuSb bimetallic flow-through gas diffusion electrodes for efficient electrochemical CO2 reduction to CO
    Mustafa, Azeem
    Lougou, Bachirou Guene
    Shuai, Yong
    Wang, Zhijiang
    ur-Rehman, Haseeb
    Razzaq, Samia
    Wang, Wei
    Pan, Ruming
    Li, Fanghua
    Han, Lei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 657 : 363 - 372
  • [32] B-Cu-Zn Gas Diffusion Electrodes for CO2 Electroreduction to C2+ Products at High Current Densities
    Song, Yanfang
    Junqueira, Joao R. C.
    Sikdar, Nivedita
    Oehl, Denis
    Dieckhoefer, Stefan
    Quast, Thomas
    Seisel, Sabine
    Masa, Justus
    Andronescu, Corina
    Schuhmann, Wolfgang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (16) : 9135 - 9141
  • [33] Electrochemical Reduction of CO2: A Common Acetyl Path to Ethylene, Ethanol or Acetate
    Dauda, Monsuru
    Hendershot, John
    Bello, Mustapha
    Park, Junghyun
    Orduz, Alvaro Loaiza
    Lombardo, Nicholas
    Kizilkaya, Orhan
    Sprunger, Phillip
    Engler, Anthony
    Plaisance, Craig
    Flake, John
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (03)
  • [34] Self-supported copper-based gas diffusion electrodes for CO2 electrochemical reduction
    Zhang, Jie
    Luo, Wen
    Zuettel, Andreas
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (46) : 26285 - 26292
  • [35] Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol
    Albo, Jonathan
    Irabien, Angel
    JOURNAL OF CATALYSIS, 2016, 343 : 232 - 239
  • [36] Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media
    Monteiro, Mariana C. O.
    Philips, Matthew F.
    Schouten, Klaas Jan P.
    Koper, Marc T. M.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [37] Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media
    Mariana C. O. Monteiro
    Matthew F. Philips
    Klaas Jan P. Schouten
    Marc T. M. Koper
    Nature Communications, 12
  • [38] ELECTROCHEMICAL REDUCTION OF HIGH-PRESSURE CO2 ON NI ELECTRODES
    KUDO, A
    NAKAGAWA, S
    TSUNETO, A
    SAKATA, T
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) : 1541 - 1545
  • [39] Zn-Based Catalysts for Selective and Stable Electrochemical CO2 Reduction at High Current Densities
    Stamatelos, Ilias
    Dinh, Cao-Thang
    Lehnert, Werner
    Shviro, Meital
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (11) : 13928 - 13938
  • [40] A New Strategy for Accelerating Dynamic Proton Transfer of Electrochemical CO2 Reduction at High Current Densities
    Wang, Xinyue
    Feng, Shaohua
    Lu, Weichao
    Zhao, Yingjie
    Zheng, Sixing
    Zheng, Wanzhen
    Sang, Xiahan
    Zheng, Lirong
    Xie, Yu
    Li, Zhongjian
    Yang, Bin
    Lei, Lecheng
    Wang, Shaobin
    Hou, Yang
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (50)